1. Prove or disprove that the given map is a homomorphism. If it is a homomorphism, determine whether it is an isomorphism.
(a) The map $\phi:\left(\mathbb{Z}_{20},+\right) \rightarrow\left(\mathbb{Z}_{20},+\right)$ given by $\phi(k(\bmod 20))=8 k(\bmod 20)$.
(b) The $\operatorname{map} \phi:\left(\mathbb{Z}_{10},+\right) \rightarrow\left(\mathbb{Z}_{10},+\right)$ given by $\phi(k(\bmod 10))=k(k+4)(\bmod 10)$.
(c) The $\operatorname{map} \phi:\left(\mathbb{C}^{\times}, \times\right) \rightarrow\left(\mathbb{C}^{\times}, \times\right)$given by $\phi(z)=z^{3}$.
2. If H is a non-trivial normal subgroup of G, is it possible that $G / H \cong G$?
3. Define the following rotation and reflection matrices in $\mathrm{GL}_{2}(\mathbb{R})$, where $\theta \in \mathbb{R}$:

$$
A_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The matrices $G=\left\{A_{\theta}: \theta \in \mathbb{R}\right\} \cup\left\{B A_{\theta}: \theta \in \mathbb{R}\right\}$ form a group (no need to check this).
(a) Prove or disprove that $H=\left\{A_{\theta}: \theta \in \mathbb{R}\right\}$ is a normal subgroup of G.
(b) Is $\langle B\rangle$, the subgroup generated by B, a normal subgroup of G ?
4. Prove or disprove whether the two groups listed are isomorphic.
(a) S_{3} and $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$
(b) $\left(\mathbb{Z}_{3},+\right)$ and the complex numbers $\left\{1,-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right\}$ with multiplication
(c) $Q_{8}=$ quaternion group and $G=$ symmetries of a square
(d) \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$
(e) \mathbb{R}^{\times}and \mathbb{C}^{\times}
(f) $A_{4} \times \mathbb{Z}_{2}$ and $S_{3} \times \mathbb{Z}_{4}{ }^{1}$
5. Use the method of Cayley's Theorem to produce an explicit injective homomorphism from the group \mathbb{Z}_{8}^{\times}into a symmetric group.
6. Decide whether each statement is true or false. Give an explanation for each answer.
(a) The determinant map from the ring $M_{2}(\mathbb{R})$ to the ring \mathbb{R} is a homomorphism.
(b) The set $M_{2}\left(\mathbb{Z}_{2}\right)$, of 2×2 matrices with entries in \mathbb{Z}_{2}, forms an integral domain.
(c) Any ideal $I \subset R$ in a ring is closed under multiplication.
(d) The subset $\{a+b i: a+b \equiv 0(\bmod 2)\}$ in the ring $\mathbb{Z}[\sqrt{2}]$ is an ideal.
(e) The rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-2}]$ are isomorphic.

[^0]
[^0]: ${ }^{1}$ In a product of two groups $G_{1} \times G_{2}$, the order of $(a, b) \in G_{1} \times G_{2}$ is equal to $\operatorname{lcm}(\operatorname{ord}(a), \operatorname{ord}(b))$.

