- 1. Prove or disprove that the given map is a homomorphism. If it is a homomorphism, determine whether it is an isomorphism.
 - (a) The map $\phi : (\mathbb{Z}_{20}, +) \to (\mathbb{Z}_{20}, +)$ given by $\phi (k \pmod{20}) = 8k \pmod{20}$.
 - (b) The map $\phi: (\mathbb{Z}_{10}, +) \to (\mathbb{Z}_{10}, +)$ given by $\phi(k \pmod{10}) = k(k+4) \pmod{10}$.
 - (c) The map $\phi : (\mathbb{C}^{\times}, \times) \to (\mathbb{C}^{\times}, \times)$ given by $\phi(z) = z^3$.
- 2. If H is a non-trivial normal subgroup of G, is it possible that $G/H \cong G$?
- 3. Define the following rotation and reflection matrices in $GL_2(\mathbb{R})$, where $\theta \in \mathbb{R}$:

$$A_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The matrices $G = \{A_{\theta} : \theta \in \mathbb{R}\} \cup \{BA_{\theta} : \theta \in \mathbb{R}\}$ form a group (no need to check this).

- (a) Prove or disprove that $H = \{A_{\theta} : \theta \in \mathbb{R}\}$ is a normal subgroup of G.
- (b) Is $\langle B \rangle$, the subgroup generated by B, a normal subgroup of G?
- 4. Prove or disprove whether the two groups listed are isomorphic.
 - (a) S_3 and $\mathbb{Z}_2 \times \mathbb{Z}_6$
 - (b) $(\mathbb{Z}_3, +)$ and the complex numbers $\{1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} \frac{\sqrt{3}}{2}i\}$ with multiplication
 - (c) Q_8 =quaternion group and G =symmetries of a square
 - (d) \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$
 - (e) \mathbb{R}^{\times} and \mathbb{C}^{\times}
 - (f) $A_4 \times \mathbb{Z}_2$ and $S_3 \times \mathbb{Z}_4^1$
- Use the method of Cayley's Theorem to produce an explicit injective homomorphism from the group Z[×]₈ into a symmetric group.
- 6. Decide whether each statement is true or false. Give an explanation for each answer.
 - (a) The determinant map from the ring $M_2(\mathbb{R})$ to the ring \mathbb{R} is a homomorphism.
 - (b) The set $M_2(\mathbb{Z}_2)$, of 2×2 matrices with entries in \mathbb{Z}_2 , forms an integral domain.
 - (c) Any ideal $I \subset R$ in a ring is closed under multiplication.
 - (d) The subset $\{a + bi : a + b \equiv 0 \pmod{2}\}$ in the ring $\mathbb{Z}[\sqrt{2}]$ is an ideal.
 - (e) The rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-2}]$ are isomorphic.

¹In a product of two groups $G_1 \times G_2$, the order of $(a, b) \in G_1 \times G_2$ is equal to $\operatorname{lcm}(\operatorname{ord}(a), \operatorname{ord}(b))$.