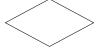
- 1. Let G be a group. Show that a nonempty subset $H \subset G$ is a subgroup if and only if the following holds: for all $a, b \in H$, $ab^{-1} \in H$.
- 2. Let G be any group. Let $a, b \in G$ and let $x \in G$ be some unknown. Suppose

$$x^3 = e, \qquad x^2b = ba.$$

- (a) Solve for x in terms of a and b. Show all steps.
- (b) Suppose G is $(\mathbb{Z}_5^{\times}, \times)$ and $a \equiv 4 \pmod{5}$, $b \equiv 3 \pmod{5}$. Find x.
- 3. Prove that the symmetric group S_n is nonabelian if and only if $n \ge 3$.
- 4. Consider the following set of real 3×3 matrices:

$$G = \left\{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right) : a, b, c \in \mathbb{R} \right\}$$

- (a) Show that G with the operation of matrix multiplication is a group.
- (b) Is the group G abelian? Explain.
- 5. List the left and right cosets of the subgroups in each of the following.
 - (a) $3\mathbb{Z}$ in \mathbb{Z}
 - (b) A_4 in S_4
 - (c) $\langle 8 \rangle$ in \mathbb{Z}_{24}
 - (d) $H = \{e, (123), (132)\}$ in S_4
- 6. Consider the following diamond shape situated inside the 2-dimensional plane:



- (a) Draw all the symmetries of this shape. How big is the group of symmetries?
- (b) Label the vertices with numbers 1, 2, 3, 4. Write down the permutation of vertices corresponding to each symmetry.
- (c) Is the corresponding permutation group a subgroup of an alternating group?
- 7. Use Fermat's Little Theorem to show that if p = 4n + 3 is prime, then there is no solution to the equation $x^2 \equiv -1 \pmod{p}$.
- 8. (a) Consider (142)(231) and (54123)(24). Compute each as a product of disjoint cycles. What are the orders of these elements, and what are their parities?
 - (b) Is $\{e, (12), (34), (12)(34), (45), (12)(45)\} \subset S_5$ a subgroup?
 - (c) What are the possible orders of elements in the alternating group A_5 ?
- 9. Compute $7^{81} \pmod{30}$.
- 10. Let G be a finite cyclic group of order n generated by a. Show that if $b = a^k$ where k is relatively prime to n, then b generates G.