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The Galois Theorem

Let us recall our setup from last lecture. For simplicity we will work with field extensions
over F Ă C, although much of what we will say holds in greater generality. Let E be a finite
extension of F . Recall that E is a Galois extension, or a splitting field , if there is some
polynomial fpxq P F rxs such that over the complex numbers, say, we have

fpxq “ apx ´ α1q⋯px ´ αnq

where a P F , and E “ F pα1, . . . , αnq. We introduced for any extension E over F the
automorphism group AutpE{F q consisting of field isomorphisms σ ∶ E Ñ E which fix F in
the sense that σpaq “ a for all a P F . In case E is Galois, we write

GalpE{F q “ AutpE{F q

and call this the Galois group of the field extension. The main result from last lecture gives
us an isomorphism from GalpE{F q to a subgroup of the symmetric group Sn, where n is the
number of roots as above.

Example: Consider the field E “ Qp
?
2,

?
3q. We saw last lecture that this is a Galois

extension over Q: it is the splitting field for the polynomial fpxq “ px2 ´ 2qpx2 ´ 3q with
roots

?
2,´

?
2,

?
3,´

?
3. The Galois group GalpE{Qq is isomorphic to Z2 ˆ Z2. In fact

GalpE{Qq “ tidE, σ1, σ2, σ3u

where σ1 has the effect of interchanging
?
2 with ´

?
2, but fixes

?
3; σ2 has the effect of

interchanging
?
3 with ´

?
3, but fixes

?
2; and σ3 “ σ1 ˝ σ2.

Note that E “ Qp
?
2,

?
3q can also be viewed as an extension of Qp

?
2q and of Qp

?
3q, and

also Qp
?
6q. We can write all these extensions in a diagram (below on the left); in general,

if a line connects E and F and E appears above F , then E is an extension field of F .

Qp
?
2,

?
3q

Qp
?
2q Qp

?
3q Qp

?
6q

Q

2
2

2

2
2

2

tidE, σ1, σ2, σ3u

tidE, σ1u tidE, σ2u tidE, σ3u

tidEu

2 2
2

2
2

2

We have also indicated the degrees of the extensions; in this case they are all 2. On the right
we have drawn instead the diagram of subgroups of the group GalpE{Qq “ tidE, σ1, σ2, σ3u.
Each subgroup has index 2, as indicated at the lines.
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The fundamental theorem of Galois theory states the precise relationship between these two
situations, and gives a correspondence between certain field extensions and subgroups.

§ (The Galois Theorem) Let E be a finite Galois extension of F Ă C. Then

rE ∶ F s “ |GalpE{F q|

For each field K with F Ă K Ă E we have that E is Galois over K. The assignment
K ↦GalpE{Kq induces a 1-1 and onto correspondence

tfields K ∶ F Ă K Ă EuÐÑ tsubgroups of GalpE{F qu

Further, we have F Ă K Ă L Ă E if and only if we have the sequence of inclusions

teu “ GalpE{Eq Ă GalpE{Lq Ă GalpE{Kq Ă GalpE{F q

Finally, a field K with F Ă K Ă E is Galois over F if and only if GalpE{Kq is a
normal subgroup of GalpE{F q, and if this is the case, we have

GalpK{F q –
GalpE{F q

GalpE{Kq

Due to a lack of time we will unfortunately omit the proof.

Consider the following problem: given a polynomial fpxq P Qrxs, we know it has some
complete set of roots in the complex numbers, say α1, . . . , αn. Thus over C we can write

fpxq “ apx ´ α1q⋯px ´ αnq

where a P Q and each αi is some complex number. Can we obtain each root αi from the
rational numbers by taking successive radicals? That is to say, can we write each αi as an
expression involving only the coefficients of fpxq, the operations of addition, multiplication,
subtraction and division, and also kth roots? The quadratic formula says the answer is “yes”
when fpXq is degree 2, and in fact the answer is “yes” for degpfpxqq ď 4. However, it is not
always possible beyond these cases:

§ (Abel–Ruffini Theorem) For any n ě 5 there are polynomials of degree n such
the roots cannot be solved in terms of radicals.

We sketch a proof of this theorem by exhibiting a quintic which is not solvable in terms of
radicals. We begin by recasting what we mean by solvable in terms of field theory: if we can
solve for the roots of fpxq in terms of radicals, then there is a chain of field extensions

Q “ F0 Ă F1 Ă F2 Ă ⋯ Ă Fk´1 Ă Fk “ E

such that E is the splitting field of fpxq and each extension

Fi Ă Fi`1
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is obtained by appending a radical, in the sense that Fi`1 “ Fipβiq where βni
i P Fi. It can

be shown that the special structure of this chain of field extensions along with the Galois
Theorem implies that GalpE{Qq is a solvable group. In general, a solvable group is a group
G that admits a sequence of subgroups Hi Ă G as depicted below

teu “ H0 Ă H1 Ă H2 Ă ⋯ Ă Hk´1 Ă Hk “ G

such that each Hi is normal in Hi`1 and the factor group Hi`1{Hi is abelian. One can prove:

§The symmetric group Sn is solvable if and only if n ď 4.

Thus to prove the Abel–Ruffini theorem for quintics, it suffices to find an irreducible poly-
nomial fpxq of degree 5 whose Galois group is isomorphic to S5.

We know in this case that GalpE{Qq is isomorphic to a subgroup G of S5. Furthermore,
from last lecture we know that this subgroup G Ă S5 is transitive, that is, given any
i, j P t1,2,3,4,5u we can find g P G such that gpiq “ j. A direct computation shows:

§If G Ă S5 is transitive and contains a transposition, then G “ S5.

It remains then to show that we can find an irreducible quintic fpxq P Qrxs whose Galois
group, viewed as a permutation group of the 5 roots, contains a transposition. For this it
suffices to find an irreducible quintic with rational coefficients that has exactly 2 complex
roots, for then complex conjugation will provide the corresponding transposition!

Example: Consider fpxq “ x5 ´ 4x ´ 1. One can check this is irreducible.

-2 -1 1 2

-10

-5

5

10

From its graph, we see that there are exactly 3 real roots. Thus there are 2 complex roots,
and complex conjugation gives an element of the Galois group which acts as a transposition
on the roots. Thus the Galois group, being a transitive subgroup of S5 with a transposition,
must be all of S5. This is not solvable, and so the roots of this quintic are not expressible in
terms of radicals.
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