The Galois Theorem

Let us recall our setup from last lecture. For simplicity we will work with field extensions over $F \subset \mathbb{C}$, although much of what we will say holds in greater generality. Let E be a finite extension of F. Recall that E is a Galois extension, or a splitting field, if there is some polynomial $f(x) \in F[x]$ such that over the complex numbers, say, we have

$$
f(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

where $a \in F$, and $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. We introduced for any extension E over F the automorphism group $\operatorname{Aut}(E / F)$ consisting of field isomorphisms $\sigma: E \rightarrow E$ which fix F in the sense that $\sigma(a)=a$ for all $a \in F$. In case E is Galois, we write

$$
\operatorname{Gal}(E / F)=\operatorname{Aut}(E / F)
$$

and call this the Galois group of the field extension. The main result from last lecture gives us an isomorphism from $\operatorname{Gal}(E / F)$ to a subgroup of the symmetric group S_{n}, where n is the number of roots as above.

Example: Consider the field $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. We saw last lecture that this is a Galois extension over \mathbb{Q} : it is the splitting field for the polynomial $f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)$ with roots $\sqrt{2},-\sqrt{2}, \sqrt{3},-\sqrt{3}$. The Galois $\operatorname{group} \operatorname{Gal}(E / \mathbb{Q})$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. In fact

$$
\operatorname{Gal}(E / \mathbb{Q})=\left\{\operatorname{id}_{E}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}
$$

where σ_{1} has the effect of interchanging $\sqrt{2}$ with $-\sqrt{2}$, but fixes $\sqrt{3} ; \sigma_{2}$ has the effect of interchanging $\sqrt{3}$ with $-\sqrt{3}$, but fixes $\sqrt{2}$; and $\sigma_{3}=\sigma_{1} \circ \sigma_{2}$.

Note that $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ can also be viewed as an extension of $\mathbb{Q}(\sqrt{2})$ and of $\mathbb{Q}(\sqrt{3})$, and also $\mathbb{Q}(\sqrt{6})$. We can write all these extensions in a diagram (below on the left); in general, if a line connects E and F and E appears above F, then E is an extension field of F.

We have also indicated the degrees of the extensions; in this case they are all 2. On the right we have drawn instead the diagram of subgroups of the $\operatorname{group} \operatorname{Gal}(E / \mathbb{Q})=\left\{\operatorname{id}_{E}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. Each subgroup has index 2, as indicated at the lines.

The fundamental theorem of Galois theory states the precise relationship between these two situations, and gives a correspondence between certain field extensions and subgroups.

- (The Galois Theorem) Let E be a finite Galois extension of $F \subset \mathbb{C}$. Then

$$
[E: F]=|\mathbf{G a l}(E / F)|
$$

For each field K with $F \subset K \subset E$ we have that E is Galois over K. The assignment $K \mapsto \mathbf{G a l}(E / K)$ induces a 1-1 and onto correspondence

$$
\{\text { fields } K: F \subset K \subset E\} \longrightarrow\{\text { subgroups of } \operatorname{Gal}(E / F)\}
$$

Further, we have $F \subset K \subset L \subset E$ if and only if we have the sequence of inclusions

$$
\{e\}=\mathbf{G a l}(E / E) \subset \mathbf{G a l}(E / L) \subset \mathbf{G a l}(E / K) \subset \mathbf{G a l}(E / F)
$$

Finally, a field K with $F \subset K \subset E$ is Galois over F if and only if $\operatorname{Gal}(E / K)$ is a normal subgroup of $\operatorname{Gal}(E / F)$, and if this is the case, we have

$$
\operatorname{Gal}(K / F) \cong \frac{\operatorname{Gal}(E / F)}{\operatorname{Gal}(E / K)}
$$

Due to a lack of time we will unfortunately omit the proof.
Consider the following problem: given a polynomial $f(x) \in \mathbb{Q}[x]$, we know it has some complete set of roots in the complex numbers, say $\alpha_{1}, \ldots, \alpha_{n}$. Thus over \mathbb{C} we can write

$$
f(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

where $a \in \mathbb{Q}$ and each α_{i} is some complex number. Can we obtain each root α_{i} from the rational numbers by taking successive radicals? That is to say, can we write each α_{i} as an expression involving only the coefficients of $f(x)$, the operations of addition, multiplication, subtraction and division, and also $k^{\text {th }}$ roots? The quadratic formula says the answer is "yes" when $f(X)$ is degree 2 , and in fact the answer is "yes" for $\operatorname{deg}(f(x)) \leqslant 4$. However, it is not always possible beyond these cases:

- (Abel-Ruffini Theorem) For any $n \geqslant 5$ there are polynomials of degree n such the roots cannot be solved in terms of radicals.

We sketch a proof of this theorem by exhibiting a quintic which is not solvable in terms of radicals. We begin by recasting what we mean by solvable in terms of field theory: if we can solve for the roots of $f(x)$ in terms of radicals, then there is a chain of field extensions

$$
\mathbb{Q}=F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset F_{k-1} \subset F_{k}=E
$$

such that E is the splitting field of $f(x)$ and each extension

$$
F_{i} \subset F_{i+1}
$$

is obtained by appending a radical, in the sense that $F_{i+1}=F_{i}\left(\beta_{i}\right)$ where $\beta_{i}^{n_{i}} \in F_{i}$. It can be shown that the special structure of this chain of field extensions along with the Galois Theorem implies that $\operatorname{Gal}(E / \mathbb{Q})$ is a solvable group. In general, a solvable group is a group G that admits a sequence of subgroups $H_{i} \subset G$ as depicted below

$$
\{e\}=H_{0} \subset H_{1} \subset H_{2} \subset \cdots \subset H_{k-1} \subset H_{k}=G
$$

such that each H_{i} is normal in H_{i+1} and the factor group H_{i+1} / H_{i} is abelian. One can prove:

The symmetric group S_{n} is solvable if and only if $n \leqslant 4$.

Thus to prove the Abel-Ruffini theorem for quintics, it suffices to find an irreducible polynomial $f(x)$ of degree 5 whose Galois group is isomorphic to S_{5}.

We know in this case that $\operatorname{Gal}(E / \mathbb{Q})$ is isomorphic to a subgroup G of S_{5}. Furthermore, from last lecture we know that this subgroup $G \subset S_{5}$ is transitive, that is, given any $i, j \in\{1,2,3,4,5\}$ we can find $g \in G$ such that $g(i)=j$. A direct computation shows:

- If $G \subset S_{5}$ is transitive and contains a transposition, then $G=S_{5}$.

It remains then to show that we can find an irreducible quintic $f(x) \in \mathbb{Q}[x]$ whose Galois group, viewed as a permutation group of the 5 roots, contains a transposition. For this it suffices to find an irreducible quintic with rational coefficients that has exactly 2 complex roots, for then complex conjugation will provide the corresponding transposition!

Example: Consider $f(x)=x^{5}-4 x-1$. One can check this is irreducible.

From its graph, we see that there are exactly 3 real roots. Thus there are 2 complex roots, and complex conjugation gives an element of the Galois group which acts as a transposition on the roots. Thus the Galois group, being a transitive subgroup of S_{5} with a transposition, must be all of S_{5}. This is not solvable, and so the roots of this quintic are not expressible in terms of radicals.

