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The Galois Theorem

Let us recall our setup from last lecture. For simplicity we will work with field extensions
over F' < C, although much of what we will say holds in greater generality. Let E be a finite
extension of F. Recall that E is a Galois extension, or a splitting field, if there is some
polynomial f(x) € F[z] such that over the complex numbers, say, we have

f(x) = a(x — an)-(z — an)

where @ € F, and F = F(ay,...,a,). We introduced for any extension E over F' the
automorphism group Aut(E/F') consisting of field isomorphisms ¢ : E — FE which fix F in
the sense that o(a) = a for all a € F. In case E is Galois, we write

Gal(E/F) = Auwt(E/F)

and call this the Galois group of the field extension. The main result from last lecture gives
us an isomorphism from Gal(E/F') to a subgroup of the symmetric group S,,, where n is the
number of roots as above.

Example: Consider the field E = Q(1/2,4/3). We saw last lecture that this is a Galois

extension over Q: it is the splitting field for the polynomial f(x) = (22 — 2)(2? — 3) with

roots v/2, —v/2,4/3, —v/3. The Galois group Gal(E/Q) is isomorphic to Zy x Z,. In fact
G&l(E/Q) = {ldE, J1,09, 0'3}

where oy has the effect of interchanging V2 with —v/2, but fixes v/3; 09 has the effect of
interchanging V3 with —+/3, but fixes v/2; and o3 = 07 © 05.

Note that F = Q(1/2,+/3) can also be viewed as an extension of Q(1/2) and of Q(+/3), and
also Q(v/6). We can write all these extensions in a diagram (below on the left); in general,
if a line connects E' and F and E appears above F', then E is an extension field of F.

Q(v2,v/3) {idg, 01,00, 03}

2 2
2 ) 2 / 2

Q(\/i) Q(\/§) Q(\/g) {idE,O'l} {idE,O'Q} {idE,O'g}

2
2 2 2 \ ’

Q {idg}

We have also indicated the degrees of the extensions; in this case they are all 2. On the right
we have drawn instead the diagram of subgroups of the group Gal(E/Q) = {idg, 01, 02, 03}.
Each subgroup has index 2, as indicated at the lines.
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The fundamental theorem of Galois theory states the precise relationship between these two
situations, and gives a correspondence between certain field extensions and subgroups.

(The Galois Theorem) Let E be a finite Galois extension of ' < C. Then
[E: F]=|Gal(E/F)|

For each field K with ' < K ¢ F we have that F is Galois over K. The assignment
K ~ Gal(F/K) induces a 1-1 and onto correspondence

{fields K : F ¢ K ¢ E} — {subgroups of Gal(E/F)}
Further, we have ' < K c L c F if and only if we have the sequence of inclusions
{e} = Gal(FE/F)c Gal(FE/L) c Gal(E/K) c Gal(E/F)

Finally, a field K with F'c K c F is Galois over I if and only if Gal(E/K) is a
normal subgroup of Gal(E/F), and if this is the case, we have

Gal(K/F) = %

Due to a lack of time we will unfortunately omit the proof.

Consider the following problem: given a polynomial f(z) € Q[x], we know it has some
complete set of roots in the complex numbers, say ay,...,a,. Thus over C we can write

f(x) = a(z — an)-(z — an)

where a € Q and each «; is some complex number. Can we obtain each root «; from the
rational numbers by taking successive radicals? That is to say, can we write each a; as an
expression involving only the coefficients of f(z), the operations of addition, multiplication,
subtraction and division, and also k*" roots? The quadratic formula says the answer is “yes”
when f(X) is degree 2, and in fact the answer is “yes” for deg(f(x)) < 4. However, it is not
always possible beyond these cases:

(Abel-Ruffini Theorem) For any n > 5 there are polynomials of degree n such
the roots cannot be solved in terms of radicals.

We sketch a proof of this theorem by exhibiting a quintic which is not solvable in terms of
radicals. We begin by recasting what we mean by solvable in terms of field theory: if we can
solve for the roots of f(x) in terms of radicals, then there is a chain of field extensions

Q:F()CFlCFQC"'CFk,lCFk:E
such that F is the splitting field of f(z) and each extension

Fic Fi
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is obtained by appending a radical, in the sense that F;.; = Fj(5;) where " € F;. It can
be shown that the special structure of this chain of field extensions along with the Galois
Theorem implies that Gal(E/Q) is a solvable group. In general, a solvable group is a group
G that admits a sequence of subgroups H; — G as depicted below

{e}:H[)CHlCHQC'-'CHk,lCHk:G
such that each H; is normal in H;,; and the factor group H;,/H; is abelian. One can prove:

The symmetric group 95, is solvable if and only if n < 4.

Thus to prove the Abel-Ruffini theorem for quintics, it suffices to find an irreducible poly-
nomial f(xz) of degree 5 whose Galois group is isomorphic to S.

We know in this case that Gal(E/Q) is isomorphic to a subgroup G of S;. Furthermore,
from last lecture we know that this subgroup G < S; is transitive, that is, given any
i,j€{1,2,3,4,5} we can find g € G such that g(i) = j. A direct computation shows:

If G < S5 is transitive and contains a transposition, then G = Ss.
It remains then to show that we can find an irreducible quintic f(z) € Q[x] whose Galois
group, viewed as a permutation group of the 5 roots, contains a transposition. For this it
suffices to find an irreducible quintic with rational coefficients that has exactly 2 complex

roots, for then complex conjugation will provide the corresponding transposition!

Example: Consider f(z) = x% —4x — 1. One can check this is irreducible.

From its graph, we see that there are exactly 3 real roots. Thus there are 2 complex roots,
and complex conjugation gives an element of the Galois group which acts as a transposition
on the roots. Thus the Galois group, being a transitive subgroup of S; with a transposition,
must be all of S5. This is not solvable, and so the roots of this quintic are not expressible in
terms of radicals.
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