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Splitting fields and Galois groups

Let fpxq P F rxs be a polynomial with coefficients in a field F . A field extension E over
F is called a splitting field for the polynomial fpxq if there are α1, . . . , αn P E such that
E “ F pα1, . . . , αnq and the polynomial splits into linear factors

fpxq “ apx ´ α1q⋯px ´ αnq

for some non-zero constant a P F .

Examples

1. Let fpxq be the polynomial x2 ` 1 P Rrxs. As fpxq “ px ´ iqpx ` iq as a polynomial in
Crxs, a splitting field for fpxq is given by Rpi,´iq “ Rpiq “ C.

2. Let fpxq “ x2 ´ 2 P Qrxs. Then fpxq “ px ´
?
2qpx `

?
2q. Thus a splitting field is given

by the field extension Qp
?
2q over Q.

3. Let fpxq “ px2 ´ 2qpx2 ´ 3q P Qrxs. A splitting field for this polynomial is given by the
field extension Qp

?
2,

?
3q over Q.

4. Let fpxq “ x3 ´ 2 P Qrxs. The complex roots of this polynomial are as follows:

3
?
2,

3
?
2 ¨ e2πi{3,

3
?
2 ¨ e´2πi{3

Thus a splitting field for fpxq is given by E “ Qp
3
?
2, 3

?
2e2πi{3, 3

?
2e´2πi{3q. Note that

3
?
2 ¨ e´2πi{3 “

´

3
?
2
¯2 ´

3
?
2 ¨ e2πi{3

¯´1

so the third root is already in the field which is generated by the first two roots. In other
words, our splitting field can be written E “ Qp

3
?
2, 3

?
2e2πi{3q. Furthermore, clearly 3

?
2e2πi{3

can be replaced by e2πi{3 so that E “ Qp
3
?
2, e2πi{3q. Finally,

e2πi{3 “ ´
1

2
`

?
3

2
i

and so e2π{3 can be replaced by
?

´3. In summary, we have the identification

E “ Qp
3
?
2,

?
´3q

We leave as an exercise that also E “ Qp
3
?
2 ` e2πi{3q.

5. Let fpxq “ x4 ´2 P Qrxs. The complex roots of this polynomial are 4
?
2,´ 4

?
2, 4

?
2i,´ 4

?
2i.

We have the splitting field Qp
4
?
2, 4

?
2iq “ Qp

4
?
2, iq.

It is a basic result, which we omit, that for a given non-constant polynomial fpxq P F rxs,
a splitting field exists for fpxq; and moreover, any two such splitting fields are isomorphic.
Thus given fpxq P F rxs we may speak of the splitting field of fpxq.
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§ Given a field extension E over F , we define

AutpE{F q “ tσ ∶ E Ñ E ∶ σ is an isomorphism, σpaq “ a for all a P F u

This is naturally a group, called the automorphism group of the field extension.

Proof. Let σ,σ1 P AutpE{F q so that σ, σ1 ∶ E Ñ E are isomorphisms each fixing F , i.e.
σpaq “ σ1paq “ a for all a P F . Then the composition σ ˝ σ1 is an isomorphism of E
and pσ ˝ σ1qpaq “ σpσ1paqq “ σpaq “ a. Thus σ ˝ σ1 P AutpE{F q. Further, a “ idEpaq “

pσ´1˝σqpaq “ σ´1pσpaqq “ σ´1paq and thus σ´1 P AutpE{F q. Thus AutpE{F q is a group.

A finite field extension E over a subfield of C is called Galois if it is a splitting field of
some polynomial fpxq P Qrxs. All examples above are Galois extensions. More generally, a
finite extension E over an arbitrary field F is Galois if it is the splitting field of a polyno-
mial fpxq P F rxs which has no repeated roots in E. We mainly focus on finite extensions
of Q and other subfields of C, in which case Galois fields can be identified with splitting fields.

§ If E is a Galois extension of a field F we write

GalpE{F q “ AutpE{F q

and call this the Galois group of the field extension.

As a (finite) Galois extension E over F is the splitting field of some polynomial fpxq P F rxs,
we also call GalpE{F q the Galois group of the polynomial fpxq.

§ Let E “ F pα1, . . . , αnq be the splitting field of fpxq P F rxs whose roots in E are
α1, . . . , αn. Then there is a 1-1 homomorphism

ϕ ∶GalpE{F qÐÑ Sn

to the symmetric group Sn. If fpxq P F rxs is irreducible, then the image subgroup
impϕq Ă Sn is a transitive subgroup of Sn.

We remark that a transitive subgroup G Ă Sn is a subgroup of the symmetric group Sn such
that for all i, j P t1, . . . , nu there is a permutation f P G such that fpiq “ j.

Proof. First, write fpxq “ anxn `⋯` a0 where each ai P F . Consider a root αi P E of fpxq,
and some σ P GalpE{F q. Using that σ ∶ E Ñ E is a homomorphism fixing F we compute:

fpσpαiqq “ anpσpαiqqn ` an´1pσpαiqqn´1 `⋯` a1σpαiq ` a0

“ anpσpαn
i qq ` an´1pσpαn´1

i qq `⋯` a1σpαiq ` a0

“ σpanpαn
i qq ` σpan´1pαn´1

i qq `⋯` σpa1αiq ` σpa0q

“ σpanα
n
i ` an´1α

n´1
i ⋯` a1αi ` a0q “ σp0q “ 0
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Thus σpαiq is also a root of fpxq, and therefore σpαiq “ αj for some j P t1, . . . , nu. Since E
is Galois over F , the roots are distinct, so the index j is uniquely determined.

Next, define ϕ ∶ GalpE{F q Ñ Sn by ϕpσqpiq “ j if and only if σpαiq “ αj. In other words, we
look at how the automorphism σ ∶ E Ñ E permutes the roots α1, . . . , αn. It is straightfor-
ward from this construction that ϕ is a homomorphism.

Next, recall E “ F pα1, . . . , αnq. As σ P GalpE{F q fixes F , it is entirely determined by where
it sends the elements αi. This shows that ϕ is 1-1.

Finally, suppose fpxq is irreducible. Then F pαiq – F rxs{fpxq for any root αi of fpxq.
In particular, for αi and αj any two roots of fpxq that lie in E we have an isomorphism
F pαiq – F rxs{fpxq – F pαjq. This can be extended to an isomorphism E Ñ E (we omit this
step), from which the result follows.

The above result shows that the Galois group of E over F is isomorphic to a subgroup of
Sn, which has order n!. We obtain:

§ Let E be the splitting field of fpxq P F rxs whose degree is n. Then

|GalpE{F q| divides n!.

Examples

1. Let fpxq be the polynomial x2 ` 1 P Rrxs, whose splitting field is C “ Rpi,´iq. Label the
roots of fpxq by α1 “ i and α2 “ ´i. Note that complex conjugation σ ∶ C Ñ C defined by

σpa ` biq “ a ´ bi

is an element of GalpC{Rq of order 2. Thus tidC, σu Ă GalpC{Rq. As the Galois group has
order dividing 2! “ 2, this is in fact an equality of groups. Thus GalpC{Rq – Z2.

2. Let fpxq “ x2 ´ 2 P Qrxs with splitting field Qp
?
2q. Similar to the previous ex-

ample, there is only one non-trivial automorphism σ P GalpQp
?
2q,Qq and it is given by

σpa ` b
?
2q “ a ´ b

?
2. We have GalpQp

?
2q{Qq – Z2.

3. Let fpxq “ px2 ´ 2qpx2 ´ 3q P Qrxs with splitting field E “ Qp
?
2,

?
3q. Recall that any

element in E can be written uniquely as

a ` b
?
2 ` c

?
3 ` d

?
2
?
3

where a, b, c, d P Q. Define automorphisms σ1, σ2, σ3 P GalpE{Qq by

σ1pa ` b
?
2 ` c

?
3 ` d

?
2
?
3q “ a ´ b

?
2 ` c

?
3 ´ d

?
2
?
3

σ2pa ` b
?
2 ` c

?
3 ` d

?
2
?
3q “ a ` b

?
2 ´ c

?
3 ´ d

?
2
?
3

σ3pa ` b
?
2 ` c

?
3 ` d

?
2
?
3q “ a ´ b

?
2 ´ c

?
3 ´ d

?
2
?
3
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Labelling the roots of fpxq as α1 “
?
2, α2 “ ´

?
2, α3 “

?
3, α4 “ ´

?
3 we have

ϕpσ1q “ p12q, ϕpσ2q “ p34q, ϕpσ3q “ p12qp34q

Because no automorphism can interchange ˘
?
2 with ˘

?
3, these are all of them. Thus

GalpE{Qq “ tidE, σ1, σ2, σ3u – te, p12q, p34q, p12qp34qu Ă S4

Note that this group is isomorphic to Z2 ˆ Z2. Note in this example that fpxq is not irre-
ducible, and that the corresponding permutation group is not transitive.

4. Let fpxq “ x3 ´ 2 P Qrxs with splitting field E “ Qp
3
?
2,

?
´3q. The roots of fpxq are

α1 “
3
?
2, α2 “

3
?
2 ¨ e2πi{3, α3 “

3
?
2 ¨ e´2πi{3

A direct computation shows that every permutation of these 3 roots extends to define an
automorphism, and thus GalpE{Qq – S3.

5. Let fpxq “ x4 ´ 2 P Qrxs with splitting field E “ Qp
4
?
2, iq. The roots of fpxq are

α1 “
4
?
2, α2 “ ´

4
?
2, α3 “

4
?
2i, α4 “ ´

4
?
2i

Note an automorphism of this extension is determined by where it sends α1 “
4
?
2 and i.

There are automorphisms σ, τ P GalpE{Qq such that:

σp
4
?
2q “

4
?
2i, σpiq “ i

τp
4
?
2q “

4
?
2, τpiq “ ´i

We have ϕpσq “ p1324q and ϕpτq “ p34q. Any other automorphism is a composition of these
two automorphisms. The Galois group is isomorphic to the following subgroup of S4:

GalpE{Qq – te, p12q, p34q, p12qp34q, p1324q, p1423q, p13qp24q, p14qp23qu Ă S4

In fact this subgroup is isomorphic to the dihedral group D4, the symmetries of a square.
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