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Splitting fields and Galois groups

Let f(z) € F[x] be a polynomial with coefficients in a field F. A field extension E over
F is called a splitting field for the polynomial f(x) if there are ay,...,a, € E such that
E = F(aq,...,q,) and the polynomial splits into linear factors

f(x) = alz —ar)-(r - an)

for some non-zero constant a € F'.

Examples

1. Let f(x) be the polynomial 22+ 1 € R[z]. As f(z) = (

x —i)(z +14) as a polynomial in
C[z], a splitting field for f(z) is given by R(i,—i) = R(i) = C.

2. Let f(z) = 22 —2€ Q[z]. Then f(x) = (z —+/2)(z + +/2). Thus a splitting field is given
by the field extension Q(+/2) over Q.

3. Let f(z) = (22 — 2)(2? — 3) € Q[z]. A splitting field for this polynomial is given by the
field extension Q(v/2,4/3) over Q.

4. Let f(z) = 23 — 2 € Q[z]. The complex roots of this polynomial are as follows:
{2, /2. 23, 3. e=2mif3
Thus a splitting field for f(x) is given by E = Q(¥/2, ¥/2e7i/3, {/2e=27/3). Note that

39 . e=2mi/3 _ (%)2 (% , 62m'/3> !

so the third root is already in the field which is generated by the first two roots. In other
words, our splitting field can be written E = Q(%/2, ¥/2¢27/3). Furthermore, clearly {/2¢27/3
can be replaced by e2™/3 so that E = Q(3/2, €27/3). Finally,

1 V3

627”/3 — 4+ X5

2 2

and so e?™/3 can be replaced by +/—3. In summary, we have the identification

E =Q(V2,v/-3)

We leave as an exercise that also E = Q({/2 + e27/3).

5. Let f(x) = 24 —2 e Q[x]. The complex roots of this polynomial are v/2, —+/2, v/2i, —v/2i.
We have the splitting field Q(~/2, v/2i) = Q(+/2,4).

It is a basic result, which we omit, that for a given non-constant polynomial f(z) € F[z],
a splitting field exists for f(z); and moreover, any two such splitting fields are isomorphic.
Thus given f(z) € F[x] we may speak of the splitting field of f(z).
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Given a field extension E over F, we define
Aut(E/F)={0c:FE — E : o is an isomorphism, o(a) = a for all a € F'}
This is naturally a group, called the automorphism group of the field extension.

Proof. Let 0,0’ € Aut(E/F) so that 0,0’ : E — E are isomorphisms each fixing F, i.e.
o(a) = o'(a) = a for all a € F. Then the composition ¢ o ¢’ is an isomorphism of E
and (o o00’)(a) = o(0'(a)) = o(a) = a. Thus o oo’ € Aut(E/F). Further, a = idg(a) =
(07too)(a) =07 o(a)) = 0~'(a) and thus o~ € Aut(E/F). Thus Aut(E/F) is a group. [

A finite field extension E over a subfield of C is called Galois if it is a splitting field of
some polynomial f(x) e Q[z]. All examples above are Galois extensions. More generally, a
finite extension F over an arbitrary field F' is Galois if it is the splitting field of a polyno-
mial f(x) € F|z] which has no repeated roots in £. We mainly focus on finite extensions
of Q and other subfields of C, in which case Galois fields can be identified with splitting fields.

» If £ is a Galois extension of a field F' we write
Gal(E/F) = Aut(E/F)
and call this the Galois group of the field extension.

As a (finite) Galois extension E over F' is the splitting field of some polynomial f(x) € F[z],
we also call Gal(E/F) the Galois group of the polynomial f(z).

Let E = F(ay,...,a,) be the splitting field of f(x) € F[r] whose roots in E are
ai,...,a,. Then there is a 1-1 homomorphism

¢:Gal(E/F) — S,

to the symmetric group S,. If f(z) € F|[z] is irreducible, then the image subgroup
im(¢) < S, is a transitive subgroup of S,,.

We remark that a transitive subgroup G < S,, is a subgroup of the symmetric group S,, such
that for all 7,5 € {1,...,n} there is a permutation f € G such that f(i) = j.

Proof. First, write f(x) = a,z™ + - + ap where each a; € F'. Consider a root a; € F of f(x),
and some o € Gal(E/F). Using that o : E — E is a homomorphism fixing F' we compute:

flo()) = an(o(a))” + apn_1(o(a))" t + -+ aro(i) + ag
= ay(o(a)) + ap_1(o(a™) + -+ a10(as) + ag
=o(an(a?) + o(an_1 (™) + -+ o(ara;) + o(ag)

= 0(a,af + a,_ 1071+ aga; +ag) = 0(0) =0
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Thus (o) is also a root of f(x), and therefore o(c;) = a; for some j € {1,...,n}. Since E
is Galois over F', the roots are distinct, so the index j is uniquely determined.

Next, define ¢ : Gal(E/F') — S, by ¢(o)(z) = j if and only if o(e;) = a;. In other words, we
look at how the automorphism ¢ : E — E permutes the roots aq,...,a,. It is straightfor-
ward from this construction that ¢ is a homomorphism.

Next, recall E = F(ay,...,a,). As 0 € Gal(E/F) fixes F, it is entirely determined by where
it sends the elements «;. This shows that ¢ is 1-1.

Finally, suppose f(z) is irreducible. Then F(«;) = F[z]/f(x) for any root «; of f(x).
In particular, for «; and «; any two roots of f(x) that lie in £ we have an isomorphism
F(o;) = Flz]/f(z) = F(c;). This can be extended to an isomorphism £ — E (we omit this
step), from which the result follows. n

The above result shows that the Galois group of E over F' is isomorphic to a subgroup of
S,,, which has order n!. We obtain:

Let E be the splitting field of f(z) € F[x] whose degree is n. Then
|Gal(E/F)| divides nl.

Examples

1. Let f(z) be the polynomial 22 + 1 € R[z], whose splitting field is C = R(¢, —i). Label the
roots of f(x) by ay =i and ay = —i. Note that complex conjugation o : C — C defined by

ola+bi)=a—bi
is an element of Gal(C/R) of order 2. Thus {idc,o} < Gal(C/R). As the Galois group has
order dividing 2! = 2, this is in fact an equality of groups. Thus Gal(C/R) = Zs.

2. Let f(z) = 22 — 2 e Q[z] with splitting field Q(v/2). Similar to the previous ex-
ample, there is only one non-trivial automorphism ¢ € Gal(Q(+/2),Q) and it is given by
o(a+byv2) =a—by2. We have Gal(Q(v/2)/Q) = Z,.

3. Let f(z) = (22 — 2)(22 — 3) € Q[x] with splitting field E = Q(v/2,4/3). Recall that any
element in £ can be written uniquely as

a+bvV2+cV3+dvVav3
where a, b, c¢,d € Q. Define automorphisms oy, 09,03 € Gal(E/Q) by

or(a+bV2+eV3+dvV2V3) = a—bV2 + V3 —dv2V3
oa(a+bV2+ V3 +dvV2V3) = a + bvV2 — V3 — dvV2V3
o3(a+bV2+ V3 +dvV2V3) = a —bvV2 — V3 — dvV2V3
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Labelling the roots of f(z) as ay = V2,00 = —/2, a3 = /3,4 = —+/3 we have
¢(01) = (12),  ¢(02) = (34), @(o3) = (12)(34)
Because no automorphism can interchange +4/2 with ++/3, these are all of them. Thus
Gal(E/Q) = {idg, 01,09,03} = {e, (12),(34),(12)(34)} = S,

Note that this group is isomorphic to Zs x Zs. Note in this example that f(z) is not irre-
ducible, and that the corresponding permutation group is not transitive.

4. Let f(z) = 23 — 2 € Q[z] with splitting field F = Q(3/2,4/—3). The roots of f(z) are
ay = \‘3/57 Qy = g/i 6271”1'/3, Qg = 3/5 e—2mi/3

A direct computation shows that every permutation of these 3 roots extends to define an
automorphism, and thus Gal(E/Q) =~ Ss.

5. Let f(z) = 2* — 2 € Q[x] with splitting field E = Q(+/2,4). The roots of f(x) are
alz{l/éa OZQZ_{I/ia Oé3:{l/§7;7 a4:_{l/§l

Note an automorphism of this extension is determined by where it sends oy = v/2 and i.
There are automorphisms o, 7 € Gal(E/Q) such that:

o(V2) = v/2i, o(i)=1
T(V2) =2, 7(i) = —i

We have ¢(0) = (1324) and ¢(7) = (34). Any other automorphism is a composition of these
two automorphisms. The Galois group is isomorphic to the following subgroup of Sy:

Gal(E/Q) = {e,(12),(34), (12)(34), (1324), (1423), (13)(24), (14)(23)} = S,

In fact this subgroup is isomorphic to the dihedral group Dy, the symmetries of a square.



	Splitting fields and Galois groups

