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Degrees of field extensions

Last lecture we introduced the notion of algebraic and transcendental elements over a field,
and we also introduced the degree of a field extension. Recall that for a field extension E of
F , we may view E as a vector space over F , and the degree of the extension E is given by

dimF E “ rE ∶ F s

Today we will study the relationship between algebraic extensions and degrees of extensions.
We first begin with a few examples.

Examples

1. Consider the extension Qp
?
2q of the field Q. We know that Qp

?
2q consists of numbers

a` b
?
2 where a, b P Q. Let v1 “ 1 and v2 “

?
2. Then S “ tv1, v2u is a linearly independent

subset of Qp
?
2q as a vector space over Q, and S spans Qp

?
2q. Thus S is a basis for Qp

?
2q

viewed as a vector space over Q. From this we conclude

rQp
?
2q ∶ Qs “ dimQ Qp

?
2q “ 2

Thus the degree of the extension Qp
?
2q over Q is equal to 2.

2. Consider C as an extension of R. We can write every complex number uniquely as a` bi
where a, b P R. Then S “ t1, iu is a basis for C viewed as a vector space over R, and

rC ∶ Rs “ dimR C “ 2

Thus the degree of the extension C over R is equal to 2.

3. ConsiderQp
?
2`

?
3q as an extension ofQp

?
2q. We saw last lecture that

?
2 P Qp

?
2`

?
3q

so this is in fact an extension. In fact, we can argue that

Qp
?
2 `

?
3q “ Qp

?
2,

?
3q

Indeed, clearly Qp
?
2`

?
3q Ă Qp

?
2,

?
3q, and as we showed that

?
2,

?
3 P Qp

?
2`

?
3q the

reverse inclusion also holds. Every element in this extension can be written uniquely as

x `
?
3y “ pa ` b

?
2q `

?
3pc ` d

?
2q “ a ` b

?
2 ` c

?
3 ` d

?
6

where a, b, c, d P Q. Thus S “ t1,
?
3u is a basis of Qp

?
2 `

?
3q over the field Qp

?
2q, and

rQp
?
2 `

?
3q ∶ Qp

?
2qs “ dimQp

?
2q Qp

?
2 `

?
3q “ 2

At the same time we see that as a vector space over Q, the field Qp
?
2,

?
3q has basis

t1,
?
2,

?
3,

?
6u and so is of degree 4 over Q:

rQp
?
2 `

?
3q ∶ Qs “ dimQ Qp

?
2 `

?
3q “ 4
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We say that an extension E of a field F is finite if the degree rE ∶ F s is a finite number, i.e.
if E is a finite dimensional vector space over the field F .

§ If E is a finite extension of F , then E is an algebraic extension over F .

Proof. Suppose rE ∶ F s “ n. Let α P E. Consider the elements 1, α, . . . , αn. As there are
n` 1 elements here, and dimF E “ n, they must be linear dependent, i.e. there is a relation

anα
n ` an´1α

n´1 `⋯` a1α ` a01 “ 0

where not all of the a0, . . . , an P F are zero. Then α is a root of the polynomial fpxq P F rxs

given by fpxq “
řn

i“0 aix
i, and so α is algebraic over F . As α was an arbitrary element of

E, we conclude that E is an algebraic extension of F .

§ Suppose F Ă E and E Ă K are finite extensions. Then

rK ∶ F s “ rK ∶ EsrE ∶ F s

In particular, K is a finite extension of F .

Proof. Suppose rE ∶ F s “ n and rK ∶ Es “ m. Let tv1, . . . , vnu Ă E be a basis for E as a
vector space over F , and tw1, . . . ,wmu Ă K a basis for K as a vector space over E. Then
we claim that S “ tviwju Ă K where 1 ď i ď n and 1 ď j ď m is a basis for K as a vector
space over F . To establish this we must show that S is linearly independent and also spansK.

We first show S is linearly independent. Suppose we have a relation

ÿ

1ďiďn
1ďjďm

aij ¨ viwj “ 0

where aij P F . Then we can write this expression as

ÿ

1ďjďm

cj ¨ wj “ 0 where cj “
ÿ

1ďiďn

aijvi P E

Since the wj are linearly independent in K over E, we must have cj “ 0 for 1 ď j ď m. Then

cj “
ÿ

1ďiďn

aijvi “ 0

and as the vi are linearly independent in E over F , we must have, for each j, that aij “ 0
for 1 ď i ď n. Thus all aij “ 0. This shows that S is linearly independent over F .

We show S spans K over F . Let k P K. As the wj are a basis for K over E, we can write

k “

m
ÿ

j“1

cjwj
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for some cj P E. As the vi are a basis of E over F , we can write cj “
řn

i“1 aijvi for some
aij P F . Then k “

ř

aijviwj. This show S spans K over F Hence S is a basis for K over E.

Finally, the basis S contains nm elements and we compute

dimF K “ rK ∶ F s “ nm “ rK ∶ EsrE ∶ F s

You might have already noticed this property in the last example we studied above: we have

4 “ rQp
?
2 `

?
3q ∶ Qs “ rQp

?
2 `

?
3q ∶ Qp

?
2qsrQp

?
2q ∶ Qs “ 2 ¨ 2

§ Let α be algebraic over F with minimal polynomial ppxq P F rxs. Then

rF pαq ∶ F s “ degpppxqq

Proof. Let ppxq “ xn ` an´1xn´1 ` ⋯ ` a0 where ai P F . Then since α is a root of ppxq

we have αn ` an´1αn´1 `⋯ ` a0 “ 0. We claim S “ t1, α, . . . , αn´1u Ă F pαq is a basis of
F pαq as a vector space over F . First, if a non-trivial linear combination of these elements
with coefficients in F is zero, it would show α is the root of a polynomial of degree ă n,
contradicting the minimality of ppxq. Thus S is linearly independent. To see that S spans
F pαq, make use of the isomorphism F pαq – F rxs{pppxqq.

§ The following are equivalent statements for a field extension F Ă E.

(i) E is a finite extension of F .

(ii) There are algebraic elements α1, . . . , αn such that E “ F pα1, . . . , αnq.

Proof. In (ii), note that we have a sequence of algebraic extensions

F Ă F pα1q Ă F pα1, α2q Ă ⋯ Ă F pα1, . . . , αnq “ E

As each of these algebraic extensions is of finite degree by the previous result, we have that
(ii) implies (i).

To see that (i) implies (ii), choose α1 P E to be an element not in F . Then

rE ∶ F s “ rE ∶ F pα1qsrF pα1q ∶ F s

Next, choose α2 P E not in F pα1q. Then we have

rE ∶ F s “ rE ∶ F pα1, α2qsrF pα1, α2q ∶ F pα1qsrF pα1q ∶ F s

Continue in this fashion, and choose α3 P E not in F pα1, α2q, and so on. Since rE ∶ F s is
finite, this process must eventually terminate at a step in which E “ F pα1, . . . , αnq.
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§ Let F Ă E. The set of elements in E algebraic over F form a field.

Proof. From the previous result, F pα,βq is a finite extension of F , and hence is an algebraic
extension of F . As this extension contains the elements α˘β,αβ,α{β (β ‰ 0), these are all
algebraic elements over F . This shows that the subset of E of algebraic elements over F is
a subfield of E, and is in particular a field.

We now return to our example from last lecture of the number

5

d ?
2 ´ 1

3
a

4 `
?
5

It is at this point easy to deduce that this is an algebraic element over Q. First, we note
that an nth root of a number algebraic over Q is also algebraic over Q. To prove this, if α is
algebraic, then it satisfies ppαq “ 0 for some ppxq P Qrxs; then n

?
α is a root of ppxnq P Qrxs,

so it is also algebraic over Q.

Then all that is left to observe is that the number displayed above is obtained from rational
numbers and the field operations (addition, subtraction, multiplication, division) and taking
nth roots; all of these operations preserve the class of algebraic elements.
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