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Algebraic field extensions

Recall that if F is a field and E is an extension of F , and α P E, then we write F pαq for the
smallest subfield in E which contains F and α.

Of course in this case F pαq is again a field extension of F , and E is an extension of F pαq. In
short, F Ă F pαq Ă E. We call F pαq a simple extension of F . We can iterate this notation:
for elements α1, . . . , αn P E we write F pα1, α2, . . . , αnq for the smallest field in E containing
F and the elements α1, . . . , αn.

An element α P E in an extension field E of F is called algebraic over F if there is some
polynomial fpxq P F rxs such that fpαq “ 0. Otherwise α is called transcendental .

Examples

1. The element i “
?

´1 is algebraic over Q, because it satisfies fpiq “ 0 where fpxq “ x2`1.

2. The elements
?
2,

?
3,

?
2 `

?
3 are algebraic over Q. They first two are roots of x2 ´ 2,

x2 ´ 3, respectively. What about the third? Let α “
?
2 `

?
3. We compute

α2 “ p
?
2 `

?
3q2 “ 5 ` 2

?
6

pα2 ´ 5q2 “ p2
?
6q2 “ 24

Thus α “
?
2 `

?
3 satisfies fpαq “ 0 where fpxq “ px2 ´ 5q2 ´ 24 “ x4 ´ 10x2 ` 1.

3. The numbers π and e are transcendental over Q. This is because they are not the roots
of any polynomial with coefficients in Q.

4. Any nth root of a rational number p{q is algebraic over Q, since it satisfies xn ´ p{q “ 0.
More generally, any number obtained from the rationals via the operations of multiplication,
addition, division, and taking various types of nth roots is algebraic over Q. For example,

5

d ?
2 ´ 1

3
a

4 `
?
5

is algebraic over Q. This may not be obvious, but it will follow from a result we will prove.

5. All of the above examples are about algebraic and transcendental numbers over Q. The
numbers π and e are algebraic over R, because they are in R! Precisely, they satisfy the
polynomial equations x´ π “ 0 and x´ e “ 0, and these are of course polynomials in Rrxs.
As another example,

?
π is algebraic over Qpπq.

An extension E of a field F is algebraic if every α P E is algebraic over F , and is called
transcendental otherwise.
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§ Suppose α P E is algebraic over F . Then there is a unique monic irreducible
polynomial ppxq P F rxs such that ppαq “ 0.

Proof. Consider the evaluation homomorphism ϕα ∶ F rxs Ñ F pαq given by ϕαpfpxqq “ fpαq.
Since F is a field, F rxs is a PID, and thus the kernel of ϕα is an ideal pfpxqq where fpxq P F rxs.
Note that for a constant polynomial gpxq “ a P F we have ϕαpgpxqq “ a, and also for
gpxq “ x we have ϕαpgpxqq “ α. Thus ϕα is onto, as the image contains F and α, and
F pαq is the smallest field containing F and α. The 1st Isomorphism Theorem then gives an
isomorphism between F rxs{pfpxqq and F pαq, which is a field. Thus pfpxqq is a maximal ideal,
and fpxq must be an irreducible polynomial. If fpxq is not monic, say fpxq “ anxn `⋯` a0
where an P F is non-zero, then ppxq “ fpxq{an is a monic irreducible polynomial with
pfpxqq “ pppxqq. Note ppαq “ ϕαpppxqq “ 0. Uniqueness is left as an exercise.

In the above situation, we call ppxq the minimal polynomial of α over F . For example, the
minimal polynomial of

?
´1 over Q is ppxq “ x2 ` 1.

§ Let E be a field extension of F and α P E.

(i) If α is algebraic with minimal polynomial ppxq, then F pαq – F rxs{pppxqq.

(ii) If α is transcendental, then F pαq – FracpF rxsq.

Proof. (i) Suppose α is algebraic. Let ϕα ∶ F rxs Ñ F pαq be the evaluation homomorphism.
From the proof of the previous result, ϕα is onto and kerpϕαq “ pppxqq where ppxq is the
minimal polynomial of α. The 1st Isomorphism Theorem then proves (i).

(ii) Now suppose α is transcendental. Then ϕα has trivial kernel. Indeed, if fpxq P kerpϕαq

then fpαq “ 0; and if fpxq is a non-zero polynomial in F rxs this would contradict the
assumption that α is transcendental. Next, we can extend ϕα to a homomorphism

ψ ∶ FracpF rxsqÐÑ F pαq

by setting ψpfpxq{gpxqq “ fpαq{gpαq. This makes sense because fpxq{gpxq P FracpF rxsq has
gpxq a non-zero polynomial, and gpαq ‰ 0 because α is transcendental. The map ψ is 1-1
because the domain is a field, and is onto because ϕα is onto. Thus ψ is an isomorphism.

§ Let F be a field and fpxq P F rxs a non-constant polynomial. Then there is an
extension E of F that contains some α P E such that fpαq “ 0.

Proof. If fpxq is not irreducible, let ppxq be an irreducible polynomial which divides fpxq.
Then set E “ F rxs{pppxqq. This is a field, and F naturally is included into it. The equivalence
class of x serves as the element α.
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One of the most important tools in field theory is linear algebra. As you have already taken
a linear algebra course, we only briefly review some of the basics.

Review of some linear algebra

A vector space over a field F is an abelian group V equipped with an operation

F ˆ V ÐÑ V

written pa, vqzÑ av, called scalar multiplication, which satisfies for all a, b P F and v,w P V :

apbvq “ pabqv

pa` bqv “ av ` bv

apv `wq “ av ` aw

1v “ v

Elements of V are called vectors, and elements of F in this context are often called scalars.
A subset S Ă V is linearly independent if when v1, . . . , vm P S satisfy

a1v1 `⋯` amvm “ 0

then we must have a1 “ ⋯ “ am “ 0. Suppose S is a maximal linearly independent subset
of V . This means that if S Ă T and T is a linearly independent subset of V , then S “ T . In
this case S is called a basis for V , and the dimension of V is given by

dimF V “ #S “ size of a maximal linearly independent subset

If S is a finite set, then dimF V is finite, and V is called finite-dimensional . Otherwise, V is
infinite-dimensional . A linearly independent subset S Ă V is a basis if and only if it spans
V , i.e. any element of V can be written as a linear combination of elements in S.

Degrees of field extensions

Now let us return to our previous setup, where F is some field, and E is an extension field of
F . Then E is a vector space over F : indeed, the scalar multiplication map E ˆ F ÐÑ F is
just the multiplication of field elements, all of which may be viewed as inside E. We define

rE ∶ F s “ dimF E

and call this the degree of the field extension E of F . In the next lecture we will study the
degrees of field extensions and their relation to algebraicity.
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