MTH 461: Survey of Modern Algebra, Spring 202/ Note 31

Algebraic field extensions

Recall that if F'is a field and FE is an extension of F', and « € F, then we write F'(«) for the
smallest subfield in £ which contains F' and «.

Of course in this case F'(«) is again a field extension of F', and E is an extension of F'(«). In
short, F' < F(a) c E. We call F(a) a simple extension of F'. We can iterate this notation:
for elements a, ..., a, € E we write F(ay,qo,...,a,) for the smallest field in £ containing
F and the elements oy, ..., a,.

An element o € E in an extension field F of F' is called algebraic over F' if there is some
polynomial f(x) € F[x] such that f(a) = 0. Otherwise « is called transcendental.

Examples

1. The element ¢ = v/—1 is algebraic over QQ, because it satisfies f(i) = 0 where f(z) = 22+ 1.

2. The elements 2, v/3, v/2 + v/3 are algebraic over Q. They first two are roots of 2 — 2,
22 — 3, respectively. What about the third? Let a = v/2 + /3. We compute

a’=(V2+V3)2=5+2V6

(a? —5)% = (2V/6)% = 24
Thus « = /2 + /3 satisfies f(a) = 0 where f(z) = (22 —5)2 — 24 = 2% — 1022 + 1.

3. The numbers 7 and e are transcendental over Q. This is because they are not the roots
of any polynomial with coefficients in Q.

4. Any n'h root of a rational number p/q is algebraic over Q, since it satisfies ™ — p/q = 0.
More generally, any number obtained from the rationals via the operations of multiplication,
addition, division, and taking various types of n'® roots is algebraic over Q. For example,

5 \/5_1
34_1_\/5

is algebraic over Q. This may not be obvious, but it will follow from a result we will prove.

5. All of the above examples are about algebraic and transcendental numbers over Q. The
numbers 7 and e are algebraic over R, because they are in R! Precisely, they satisfy the
polynomial equations © — 7 = 0 and = — e = 0, and these are of course polynomials in R[z].
As another example, /7 is algebraic over Q().

An extension E of a field F' is algebraic if every a € E is algebraic over F', and is called
transcendental otherwise.
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Suppose «a € F is algebraic over F. Then there is a unique monic irreducible
polynomial p(z) € F[x] such that p(«a) = 0.

Proof. Consider the evaluation homomorphism ¢, : F'[z] — F(«a) given by ¢, (f(x)) = f(«).
Since F'is a field, F[x] is a PID, and thus the kernel of ¢, is an ideal (f(z)) where f(z) € F[x].
Note that for a constant polynomial g(z) = a € F we have ¢,(g(x)) = a, and also for
g(x) = x we have ¢,(g(z)) = a. Thus ¢, is onto, as the image contains F' and «, and
F(«) is the smallest field containing F" and «. The 1st Isomorphism Theorem then gives an
isomorphism between F[z]/(f(x)) and F(«), which is a field. Thus (f(z)) is a maximal ideal,
and f(x) must be an irreducible polynomial. If f(x) is not monic, say f(x) = a,z™ + -+ ag
where a,, € F is non-zero, then p(z) = f(z)/a, is a monic irreducible polynomial with
(f(x)) = (p(z)). Note p(a) = ¢o(p(x)) = 0. Uniqueness is left as an exercise. O

In the above situation, we call p(z) the minimal polynomial of o over F. For example, the
minimal polynomial of /—1 over Q is p(z) = 22 + 1.

Let E be a field extension of /" and a € E.
(i) If « is algebraic with minimal polynomial p(x), then F(«) = F|z]/(p(x)).

(ii) If « is transcendental, then F(a) =~ Frac(F[z]).

Proof. (i) Suppose « is algebraic. Let ¢, : F[x] — F(a) be the evaluation homomorphism.
From the proof of the previous result, ¢, is onto and ker(¢,) = (p(x)) where p(zx) is the
minimal polynomial of a. The 1st Isomorphism Theorem then proves (i).

(ii) Now suppose « is transcendental. Then ¢, has trivial kernel. Indeed, if f(z) € ker(¢,)
then f(a) = 0; and if f(x) is a non-zero polynomial in F[z] this would contradict the
assumption that « is transcendental. Next, we can extend ¢, to a homomorphism

¥ : Frac(F[z]) — F(«a)

by setting ¢¥(f(z)/g(x)) = f(a)/g(«). This makes sense because f(z)/g(z) € Frac(F[z]) has
g(x) a non-zero polynomial, and g(«) # 0 because « is transcendental. The map ¢ is 1-1
because the domain is a field, and is onto because ¢, is onto. Thus v is an isomorphism. []

Let F' be a field and f(z) € F[z] a non-constant polynomial. Then there is an
extension E of I’ that contains some « € E such that f(a) =0.

Proof. 1f f(x) is not irreducible, let p(z) be an irreducible polynomial which divides f(z).
Then set £ = F[z]/(p(x)). Thisis a field, and F' naturally is included into it. The equivalence
class of x serves as the element a. O
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One of the most important tools in field theory is linear algebra. As you have already taken
a linear algebra course, we only briefly review some of the basics.
Review of some linear algebra

A wector space over a field F' is an abelian group V' equipped with an operation
FxV—YV
written (a,v) — av, called scalar multiplication, which satisfies for all a,be F and v,w e V:

a(bv) = (ab)v
(a+b)v=av+bv
a(v+w) = av + aw
lv=w

Elements of V' are called vectors, and elements of F' in this context are often called scalars.
A subset S < V is linearly independent if when vq,...,v,, € S satisfy

101 + -+ AUy, = 0

then we must have a; = --- = a,, = 0. Suppose S is a maximal linearly independent subset
of V. This means that if S ¢ T and T is a linearly independent subset of V', then S =T. In
this case S is called a basis for V', and the dimension of V' is given by

dimp V = #S5 = size of a maximal linearly independent subset

If S is a finite set, then dimg V' is finite, and V' is called finite-dimensional. Otherwise, V is
infinite-dimensional. A linearly independent subset S < V is a basis if and only if it spans
V', i.e. any element of V' can be written as a linear combination of elements in S.

Degrees of field extensions

Now let us return to our previous setup, where F' is some field, and E is an extension field of
F'. Then FE is a vector space over F": indeed, the scalar multiplication map E x ' — F'is
just the multiplication of field elements, all of which may be viewed as inside E. We define

and call this the degree of the field extension E of F'. In the next lecture we will study the
degrees of field extensions and their relation to algebraicity.
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