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Constructions of fields

For the past few weeks we have studied general properties of rings, and described how ring
theory interacts with other areas of mathematics such as geometry and number theory. For
the rest of the course, we will focus our attention on field theory.

Today we will discuss a number of constructions for fields that will be useful later.

Field of fractions

Let R be any integral domain. It may not be the case that R is a field. However, we can
formally “invert” all non-zero elements of R to obtain a field. The result of this construction
is FracpRq, called the field of fractions of R, also called the quotient field .

To construct this field, we begin with the set of pairs tpa, bq ∶ a P R, b P R, b ‰ 0u. We define
an equivalence relation „ on this set as follows:

pa, bq „ pc, dq ðñ ac ´ bd “ 0

Let FracpRq be the equivalence classes of this relation. It is customary to write the equiva-
lence class of pa, bq as a{b. Then define addition and multiplication as:

a

b
`

c

d
“

ad ` bc

bd

a

b
¨
c

d
“

ac

bd

You can then check that with these operations the set FracpRq satisfies the axioms of a com-
mutative ring. Furthermore, if a{b P FracpRq is non-zero, then it has multiplicative inverse
b{a. Thus FracpRq is a field. The following is an exercise:

§ The map ϕ ∶ R Ñ FracpRq given by ϕpaq “ a{1 is a 1-1 ring homomorphism.

For example, the field of fractions of the integers Z is naturally isomorphic to the field of
rational numbers Q, and we write FracpZq “ Q.

If R is a field, then FracpRq is naturally isomorphic to R.

For another example, consider the ring of polynomials Rrxs where R is an integral domain
such as Z or Q. Then Rrxs is an integral domain, and we have

FracpRrxsq “

"

fpxq

gpxq
∶ fpxq, gpxq P Rrxs, gpxq ‰ 0

*

It is instructive to verify that this field is isomorphic to FracpFracpRqrxsq. In other words,
we can first take the field of fractions of R, then the field of fractions of FracpRqrxs, and we
get the same result. For example, FracpZrxsq is isomorphic to FracpQrxsq.
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The field of fractions of R is an abstract field constructed in a way such that there is a
natural “inclusion” homomorphism R Ñ FracpRq. It gives us a way of viewing any integral
domain as sitting inside some larger field. In practice, we may already have R sitting inside
a field, and the field of fractions is then isomorphic to something very concrete.

§ Suppose a ring R is contained in a field E, and F is the smallest subfield of E
containing R. Then F is isomorphic to FracpRq.

Proof. By assumption, R Ă F . We define ϕ ∶ FracpRq Ñ F as follows: ϕpa{bq “ ab´1. This
makes sense because a P R and b P R; in particular, b P F , so b has a multiplicative inverse.
Then ϕ is a homomorphism of fields. This is a 1-1 homomorphism, as is every homomorphism
between fields. Consider the image of ϕ. This is a subfield of F containing R, and so by
assumption it must be equal to F . Thus ϕ is an isomorphism.

Let R “ Zris, the Gaussian integers. Consider the following subfield of C:

Qpiq “ ta ` bi ∶ a, b P Qu

It is not difficult to see that this is the smallest subfield of C which contains Zris. Thus
FracpZrisq is isomorphic to Qpiq.

Extension fields

Let F be a field, and E is a field containing F , i.e. F Ă E. In this situation E is called an
extension field of F . The extension is proper if E ‰ F .

If α P E we write F pαq Ă E for the smallest field inside E containing both F and α.

For example, let F “ Q, E “ C, α “ i “
?

´1. Then Qpiq is the smallest field contained in
C which contains both Q and i.

For a more interesting example let us consider the field

E “ Qp
?
2 `

?
3q

This is the smallest field containing both Q and α “
?
2 `

?
3. Note that

p
?
2 `

?
3q ¨ p

?
2 ´

?
3q “ 2 ´ 3 “ ´1

and so the multiplicative inverse of
?
2 `

?
3 is given by ´

?
2 `

?
3. Then

1

2

`

α ` α´1
˘

“
1

2

´

p
?
2 `

?
3q ` p´

?
2 `

?
3q

¯

“
?
3

so that
?
3 P E. Similarly,

?
2 P E. In particular, E is an extension field of the fields Qp

?
2q

and Qp
?
3q. Note

?
2 `

?
3 is not in either of these fields, so the extension is proper.
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Quotient fields

A very useful construction that can give us fields is the quotient ring R{I of some ideal I in
a commutative ring R. Recall that R{I is a field if and only if I is a maximal ideal.

A common scenario is when the ring R is a polynomial ring of the form F rxs where F itself
is a field. Recall we proved that F rxs is a PID in this case. We need the following:

§ An ideal paq in a PID is maximal if and only if a is irreducible.

Proof. Suppose paq is maximal, and a is not irreducible. Then a “ bc where b, c are not
units. Then paq “ pbcq “ pbqpcq where pbq, pcq are proper ideals. In particular, paq Ă pbq.
By maximality, paq “ pbq. Then a “ bu for a unit u. We obtain a “ bu “ bc implying
bpu ´ cq “ 0. Since the ring is an integral domain and b ‰ 0, u “ c, Contradicting that
c is not a unit. Thus a is irreducible. Conversely, suppose a is irreducible, and paq is not
maximal. Then paq is properly contained in pbq for some proper ideal pbq. Then a “ bc for
some c. As a is irreducible, one of b or c is a unit. If b is a unit, pbq is not proper. If c is a
unit, then paq “ pbq, a contradiction. Thus paq is a maximal ideal.

Returning to the case of F rxs, where F is a field, note that the group of units of F rxs is
exactly the non-zero elements of F . Thus fpxq is irreducible if fpxq is non-zero and not a
constant polynomial, and if fpxq “ gpxqhpxq implies that one of gpxq or hpxq is a constant
polynomial. Recalling that F rxs{pfpxqq is a field when pfpxqq is maximal, we obtain:

§ For F a field and fpxq P F rxs an irreducible polynomial, F rxs{pfpxqq is a field.

Let us now use this to construct some fields.

Take F “ R and let fpxq P Rrxs be the irreducible polynomial fpxq “ x2 ` 1. Then

Rrxs{px2 ` 1q

is a field. We consider some elements in this field, where I “ px2 ` 1q:

x2 ` I “ ´1 ` I

x3 ` I “ ´x ` I

x4 ` I “ 1 ` I

⋮

Using these computations we see that any element gpxq ` I can be written as a ` bx ` I
where a, b P R. Noting that x behaves just like i “

?
´1 P C, we define

ϕ ∶ CÐÑ Rrxs{px2 ` 1q

by ϕpa ` biq “ a ` bx ` I, and you may verify this is an isomorphism.
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For another example, let us take F “ Z2 and let fpxq P Z2rxs be fpxq “ x2 `x` 1. Suppose
this is reducible. Then fpxq “ pa` bxqpc`dxq “ ac` pbc`adqx` bdx2 for a, b, c, d P Z2. But
it is easily seen that no such a, b, c, d can work. Thus fpxq is irreducible in Z2rxs.

Now we have a field given by the quotient

Z2rxs{px2 ` x ` 1q

Let us write down some elements of this field, where I “ px2 ` x ` 1q:

x2 ` I “ x ` 1 ` I

x3 ` I “ 1 ` I

In fact we see that every element in this field is equivalent to one of the cosets corresponding
to 0,1, x,1 ` x. Thus we have a field with 4 elements.
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