
MTH 461: Survey of Modern Algebra, Spring 2024 Lecture 26

Rings and geometry

In this lecture we continue studying ideals in rings, and also explain the connection of ring
theory to the geometry of algebraic varieties.

Let R be a commutative ring and consider the ring of polynomials Rrx, ys. In fact for the
time being we will take R “ R to be the real numbers, so that we may easily draw pictures.

An (algebraic) variety in R2 is a set V “ V pSq Ă R2 which consists of points px, yq in the
plane R2 that are the common roots of a given collection of polynomials S Ă RrXs:

V pSq “ tpx0, y0q P R2 ∶ fpx0, y0q “ 0 for all f P Su Ă R2

For example, consider the following subsets of Rrx, ys:

S1 “ tx2 ` y2 ´ 1u

S2 “ tpx ` y ´ 1qpx ´ y ´ 1qu

S3 “ ty2 ´ x2px ` 4
3qu

S4 “ tx, y ` 1u

The corresponding varieties V pS1q, V pS2q, V pS3q are shown below, while V pS4q “ tp0,´1qu:
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Given a subset S Ă R in any ring, we can also associate an ideal to S, called IpSq Ă R: it is
the smallest ideal containing S. Explicitly, we can define this ideal as follows:

IpSq “ t

n
ÿ

i“1

rifi ∶ ri P R,fi P Su

Each of the examples above yields such an ideal:

IpS1q “ px2 ` y2 ´ 1q

IpS2q “ ppx ` y ´ 1qpx ´ y ´ 1qq

IpS3q “ py2 ´ x2px ` 4
3qq

IpS4q “ px, y ` 1q “ pxq ` py ` 1q

(See below for the sum of ideals.) We have the following (note the reversal of inclusion!):

§ For subsets S Ă T in Rrx, ys we have V pT q Ă V pSq.
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Proof. Let px0, y0q P V pT q. This means fpx0, y0q “ 0 for all polynomials f P T . Since S Ă T
it is then certainly true that fpx0, y0q “ 0 for all f P S. Thus px0, y0q P V pSq.

The next observation is that the variety corresponding to a set S Ă Rrx, ys of polynomials
is the same as the variety associated to the ideal IpSq.

§ For S Ă Rrx, ys we have V pSq “ V pIpSqq.

Proof. As S Ă IpSq, the previous result gives us V pIpSqq Ă V pSq.

For the reverse inclusion, suppose px0, y0q P V pSq. Then fpx0, y0q “ 0 for all f P S. Let
f P IpSq. Then f “

řn
i“1 rifi for some ri P Rrx, ys and fi P S. Then

fpx0, y0q “

n
ÿ

i“1

ripx0, y0qfipx0, y0q “

n
ÿ

i“1

ripx0, y0q0 “ 0

Thus fpx0, y0q “ 0 for all f P IpSq, and px0, y0q P V pIpSqq. Thus V pSq Ă V pIpSqq.

For example, for the ideals I “ px ` y ´ 1q and I2 “ IpS2q “ ppx ` y ´ 1qpx ´ y ´ 1qq we
have I2 Ă I and so V pIq Ă V pI2q. On the left below is the variety V pIq, on the right is V pI2q.
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Given ideals I, J Ă R in a commutative ring, we define the sum, intersection, and product:

I ` J “ ta ` b ∶ a P I, b P Ju

I X J “ ta ∶ a P I, a P Ju

IJ “ t
ř

aibi ∶ ai P I, bj P Ju

These are again ideals in R, as you can check. If I “ paq and J “ pbq are principal, then
in fact IJ “ paqpbq “ pabq. We now explore the geometric interpretations of these operations.

§ For ideals I, J Ă Rrx, ys we have V pI ` Jq “ V pIq X V pJq.
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Proof. Let px0, y0q P V pIq X V pJq. Then fpx0, y0q “ 0 for all f P I and f P J . Let f P I ` J .
Then f “ f 1 ` f2 where f 1 P I, f2 P J . We compute

fpx0, y0q “ f 1px0, y0q ` f2px0, y0q “ 0 ` 0 “ 0

and therefore px0, y0q P V pI ` Jq, and we conclude V pIq X V pJq Ă V pI ` Jq.

For the reverse inclusion, since I Ă I ` J we have V pI ` Jq Ă V pIq. Similarly, V pI ` Jq Ă

V pJq. Thus V pI ` Jq Ă V pIq X V pJq. All together we obtain the statement.

The conclusion we draw from this is that the sum of ideals corresponds to the intersection
of varieties. For example, consider the ideals I1 “ IpS1q, I2 “ IpS2q, I3 “ IpS3q from earlier.
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Then I1 ` I2 is the ideal which is the sum of the principal ideals px2 ` y2 ´ 1q and ppx` y ´

1qpx´y´1qq. It is not a principal ideal itself. However the variety V pI1 `I2q is very simple:

V pI1 ` I2q “ V pI1q X V pI2q “ tp0,1q, p0,´1q, p1,0qu Ă R2

It consists of the 3 points of intersection between the circle V pI1q and the two lines V pI2q.
Similarly, we see that V pI2 ` I3q is 2 points, and V pI3 ` I1q is 4 points.

§ For ideals I, J Ă Rrx, ys we have V pI X Jq “ V pIq Y V pJq.

The proof is similar to the previous one. Thus the variety associated to the intersection
of two ideals is the union of the two varieties of each ideal. As a consequence, V pI1 X I2q,
V pI2 X I3q, V pI3 X I1q are the three pictures above (not just the intersection points!).

In fact, the same property holds for the product of ideals!

§ For ideals I, J Ă Rrx, ys we have V pIJq “ V pIq Y V pJq.

Note in general IJ ‰ I X J . For example, consider I “ pxq And J “ pxyq in Rrx, ys. Then
IJ “ px2yq while I X J “ pxyq “ J . In general, IJ Ă I X J , but not the other way around.
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Thus the above two results give instances of the phenomenon that V pIq “ V pJq for two
ideals I ‰ J . In other words, the map given by

tideals in Rrx, ysuÐÑ tvarieties in R2u

I zÑ V pIq

is not 1-1. (From our earlier discussion, it is onto.) In fact it is very far from being 1-1!
Take any polynomial f P Rrx, ys which has no real solutions to fpx, yq “ 0. Examples are
fpx, yq “ 1 and fpx, yq “ x2 ` 1. Then for any such polynomial,

V pfq “ H,

since fpx0, y0q “ 0 does not hold for any px0, y0q P R2. However the ideals p1q “ Rrx, ys and
p1 ` x2q are not the same.

To fix this last sort of problem, we can work over a field such as C which has more solutions.
Then for the ideal p1 ` x2q Ă Crx, ys the variety

V p1 ` x2q “ tpx0, y0q P C2 ∶ 1 ` x2
0 “ 0u “ tpi, y0q ∶ y0 P Cu Y tp´i, y0q ∶ y0 P Cu

is two disjoint copies of C contained inside C2. Thus it is distinguished from V p1q “ H.

Still, even after replacing R with C, we do not have a 1-1 correspondence between ideals
and varieties. To remedy this, we focus on a particular class of ideals which does make the
assignment I ↦ V pIq into a 1-1 correspondence.

§ For any ideal I Ă R in a commutative ring R, the radical of I is defined to be
?
I “ ta P R ∶ an P I for some positive n P Zu

It is instructive to verify that
?
I Ă R is an ideal. A radical ideal is an ideal of the form

?
I.

For example, consider I “ px2q Ă Rrx, ys. Then
?
I “ pxq. On the other hand,

a

pxq “ pxq.

A key property is the following: for ideals I, J we have
?
IJ “

?
I X J .

§ The following assignment is a 1-1 and onto correspondence:

tradical ideals in Crx, ysuÐÑ tvarieties in C2u

I zÑ V pIq

This sets up a “dictionary” between certain ideals, which are algebraic objects, and vari-
eties, which are geometric objects. The dictionary converts sums of ideals into intersections
of varieties, and intersections of ideals into unions of varieties.

This lecture is essentially an introduction to the subject of Algebraic Geometry , which is the
study of algebraic varieties in a much broader setting.
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