Principal ideal domains

Last lecture we introduced the notion of a principal ideal in a commutative ring. These are ideals in a commutative ring R that take the form

$$
(a)=a R=\{a r: r \in R\}
$$

A principal ideal domain (PID) is an integral domain R (a commutative ring such that $a b=0$ implies $a=0$ or $b=0$) such that every ideal in R is principal.

The ring of integers \mathbb{Z} is the most basic example of a PID. The ideals in \mathbb{Z} are

$$
(0), \quad(1), \quad(2), \quad(3), \quad(4), \quad \ldots
$$

PIDS are an important class of rings because they occur frequently and the theory of PIDS is considerably simpler than that of general (commutative) rings.

Let R be a non-zero commutative ring. The following are equivalent:
(i) R is a field.
(ii) The only ideals in R are $(0)=\{0\}$ and $(1)=R$.
(iii) Every homomorphism $\phi: R \rightarrow R^{\prime}$ where $R^{\prime} \neq\{0\}$ is $\mathbf{1 - 1}$.

Proof. We show (i) implies (ii). Assume (i), i.e. R is a division ring. Consider an ideal $I \subset R$ with $I \neq(0)$. Choose $a \in I, a \neq 0$. Since R is a division ring, $a^{-1} \in R$. Then $1=a^{-1} a \in I$ as $a^{-1} \in R$ and $a \in I$. Now for any $b \in R$, we have $b=b 1 \in I$ as $b \in R$ and $1 \in I$. Thus (ii) holds.

Next, we show (ii) implies (iii). Assume (ii): the only ideals in R are $\{0\}$ and R. Consider a homomorphism $\phi: R \rightarrow R^{\prime}$ where $R^{\prime} \neq\{0\}$. Then $\operatorname{ker}(\phi) \subset R$ is a proper ideal as $1 \notin \operatorname{ker}(\phi)$. By our assumption it must be $\{0\}$. This is equivalent to ϕ being 1-1. Thus (iii) holds.

Finally, we show (iii) implies (i). Assume (iii), i.e. every homomorphism $\phi: R \rightarrow R^{\prime}$ where $R^{\prime} \neq\{0\}$ is 1-1. Now take $a \in R$ with $a \neq 0$. Consider the natural homomorphism $\phi: R \rightarrow R /(a)$. Suppose $R /(a) \neq\{0\}$, so that ϕ is $1-1$. Then $\operatorname{ker}(\phi)=(0)$. On the other hand, $\operatorname{ker}(\phi)=(a)$. Then $(a)=(0)$ implies $a=0$, a contradiction. Thus $R /(a)=\{0\}$, impying $(a)=R=(1)$. In particular, $1=a r$ for some $r \in R$, so a has a multiplicative inverse. We have shown that every non-zero $a \in R$ is invertible, and thus R is a field.

A corollary of this result is the following:

- If R is a field, then R is a PID.

This holds simply because the only ideals in a field R are the ideals $(0)=\{0\}$ and $(1)=R$ which are principal ideals.

Thus the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all examples of PIDs.
A more exotic example of a PID is the ring of Gaussian integers

$$
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} \subset \mathbb{C}
$$

We will show this is a PID later.
We saw last lecture that the ring $\mathbb{Z}[\sqrt{-3}]$ is not a PID, because we showed that the ideal consisting of $a+b \sqrt{-3}$ with $a \equiv b(\bmod 2)$ is not principal.

Polynomial rings

Another important example involves the following construction. Let R be any ring. Define

$$
R[x]=\{\text { polynomials in } x \text { with coefficients in } R\}
$$

That is, a typical element in $R[x]$ is an expression of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}
$$

where n is a non-negative integer and a_{0}, \ldots, a_{n} are elements of the ring R. The sum $f(x)+g(x)$ and product $f(x) g(x)$ of two such polynomials are defined in the usual fashion, and this makes $R[x]$ into a ring. If R is commutative, so is $R[x]$. Also, if R is an integral domain, so too is the polynomial ring $R[x]$.

If R is a field, then $R[x]$ is a PID.
Before explaining the proof, let's explore the consequences of this result.
The rings $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$ are all PIDS. This means, for example, that for any ideal $I \subset \mathbb{Q}[x]$ there exists a polynomial $f(x)$ with rational coefficients such that $I=(f(x))$. The polynomial $f(x)$ is unique up to multiplication by an element in \mathbb{Q}^{\times}.

Let p be a prime. Then \mathbb{Z}_{p} is a field, so $\mathbb{Z}_{p}[x]$ is a PID. For example, consider $\mathbb{Z}_{2}[x]$, polynomials with coefficients in \mathbb{Z}_{2}. Some elements in this ring are

$$
0, \quad 1, \quad x, \quad 1+x, \quad x^{2}, \quad 1+x^{2}, \quad 1+x+x^{2}, \quad \ldots
$$

For any ideal $I \subset \mathbb{Z}_{2}[x]$ we can find some such element $f(x)$ such that $I=(f(x))$.
The condition that R be a field in the result is necessary. For example, consider $\mathbb{Z}[x]$. Of course \mathbb{Z} is not a field, so the result does not apply here. In fact $\mathbb{Z}[x]$ is not a PID: the ideal

$$
I=\{2 f(x)+x g(x): f(x), g(x) \in \mathbb{Z}[x]\} \subset \mathbb{Z}[x]
$$

is not a principal ideal, as you can verify.

Now let us prove the statement. We will need the following:

- (Division algorithm for polynomials) Let R be a field. Consider polynomials $f(x)$ and $g(x) \neq 0$ in $R[x]$. Then there exist unique $q(x), r(x) \in R[x]$ such that

$$
f(x)=g(x) q(x)+r(x)
$$

and where either $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$.
Here the degree of $f(x)=\sum a_{i} x^{i} \in R[x]$ is the largest n such that $a_{n} \neq 0$. We omit the proof of the division algorithm and now show that if R is a field then $R[x]$ is a PID.

Let $I \subset R[x]$ be an ideal. We must show I is principal. If $I=\{0\}$ then it is the principal ideal (0), so assume $I \neq(0)$. Let $g(x) \in I$ be non-zero and of minimal possible degree among all non-zero polynomials in I. Note $(g(x)) \subset I$. Now consider any other element $f(x) \in I$. Then the division algorithm gives us $q(x), r(x) \in R[x]$ satisyfing

$$
f(x)=g(x) q(x)+r(x)
$$

and $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$. Suppose $r(x) \neq 0$. Then

$$
r(x)=f(x)-g(x) q(x)
$$

is in I, because $f(x), g(x) \in I$ and $q(x) \in R[x]$. Furthermore, $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$. But this contradicts our assumption that $g(x)$ has the minimal possible degree among non-zero polynomials in I. So we must have $r(x)=0$. Then

$$
f(x)=q(x) q(x)
$$

This shows $f(x) \in(g(x))$. Thus $I=(g(x))$, and I is a principal ideal. This completes the proof that all ideals in $R[x]$ are principal.

Finally, we remark that if you continue to add variables to your ring, and consider polynomials in several variables, you will not get a PID. For example, consider

$$
\mathbb{Q}[x][y]=\mathbb{Q}[x, y]=\{\text { polynomials in } x, y \text { with coefficients in } \mathbb{Q}\}
$$

Then the ideal generated by the polynomials x and y, which is given by $I=\{x f(x, y)+$ $y g(x, y): f(x, y), g(x, y) \in \mathbb{Q}[x]\}$, is not a principal ideal in $\mathbb{Q}[x, y]$.

