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Principal ideal domains

Last lecture we introduced the notion of a principal ideal in a commutative ring. These are
ideals in a commutative ring R that take the form

paq “ aR “ tar ∶ r P Ru

A principal ideal domain (PID) is an integral domain R (a commutative ring such that ab “ 0
implies a “ 0 or b “ 0) such that every ideal in R is principal.

The ring of integers Z is the most basic example of a PID. The ideals in Z are

p0q, p1q, p2q, p3q, p4q, . . .

PIDS are an important class of rings because they occur frequently and the theory of PIDS
is considerably simpler than that of general (commutative) rings.

§ Let R be a non-zero commutative ring. The following are equivalent:

(i) R is a field.

(ii) The only ideals in R are p0q “ t0u and p1q “ R.

(iii) Every homomorphism ϕ ∶ R Ñ R1 where R1 ‰ t0u is 1-1.

Proof. We show (i) implies (ii). Assume (i), i.e. R is a division ring. Consider an ideal I Ă R
with I ‰ p0q. Choose a P I, a ‰ 0. Since R is a division ring, a´1 P R. Then 1 “ a´1a P I
as a´1 P R and a P I. Now for any b P R, we have b “ b1 P I as b P R and 1 P I. Thus (ii) holds.

Next, we show (ii) implies (iii). Assume (ii): the only ideals in R are t0u and R. Consider a
homomorphism ϕ ∶ R Ñ R1 where R1 ‰ t0u. Then kerpϕq Ă R is a proper ideal as 1 R kerpϕq.
By our assumption it must be t0u. This is equivalent to ϕ being 1-1. Thus (iii) holds.

Finally, we show (iii) implies (i). Assume (iii), i.e. every homomorphism ϕ ∶ R Ñ R1

where R1 ‰ t0u is 1-1. Now take a P R with a ‰ 0. Consider the natural homomorphism
ϕ ∶ R Ñ R{paq. Suppose R{paq ‰ t0u, so that ϕ is 1-1. Then kerpϕq “ p0q. On the other
hand, kerpϕq “ paq. Then paq “ p0q implies a “ 0, a contradiction. Thus R{paq “ t0u,
impying paq “ R “ p1q. In particular, 1 “ ar for some r P R, so a has a multiplicative
inverse. We have shown that every non-zero a P R is invertible, and thus R is a field.

A corollary of this result is the following:

§ If R is a field, then R is a PID.

This holds simply because the only ideals in a field R are the ideals p0q “ t0u and p1q “ R
which are principal ideals.

1



MTH 461: Survey of Modern Algebra, Spring 2024 Note 25

Thus the fields Q, R, C are all examples of PIDs.

A more exotic example of a PID is the ring of Gaussian integers

Zris “ ta ` bi ∶ a, b P Zu Ă C

We will show this is a PID later.

We saw last lecture that the ring Zr
?

´3s is not a PID, because we showed that the ideal
consisting of a ` b

?
´3 with a ” b (mod 2) is not principal.

Polynomial rings

Another important example involves the following construction. Let R be any ring. Define

Rrxs “ tpolynomials in x with coefficients in Ru

That is, a typical element in Rrxs is an expression of the form

fpxq “ anx
n ` an´1x

n´1 `⋯a1x ` a0

where n is a non-negative integer and a0, . . . , an are elements of the ring R. The sum
fpxq ` gpxq and product fpxqgpxq of two such polynomials are defined in the usual fashion,
and this makes Rrxs into a ring. If R is commutative, so is Rrxs. Also, if R is an integral
domain, so too is the polynomial ring Rrxs.

§ If R is a field, then Rrxs is a PID.

Before explaining the proof, let’s explore the consequences of this result.

The rings Qrxs,Rrxs,Crxs are all PIDS. This means, for example, that for any ideal I Ă Qrxs

there exists a polynomial fpxq with rational coefficients such that I “ pfpxqq. The polyno-
mial fpxq is unique up to multiplication by an element in Qˆ.

Let p be a prime. Then Zp is a field, so Zprxs is a PID. For example, consider Z2rxs,
polynomials with coefficients in Z2. Some elements in this ring are

0, 1, x, 1 ` x, x2, 1 ` x2, 1 ` x ` x2, . . .

For any ideal I Ă Z2rxs we can find some such element fpxq such that I “ pfpxqq.

The condition that R be a field in the result is necessary. For example, consider Zrxs. Of
course Z is not a field, so the result does not apply here. In fact Zrxs is not a PID: the ideal

I “ t2fpxq ` xgpxq ∶ fpxq, gpxq P Zrxsu Ă Zrxs

is not a principal ideal, as you can verify.
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Now let us prove the statement. We will need the following:

§ (Division algorithm for polynomials) Let R be a field. Consider polynomials
fpxq and gpxq ‰ 0 in Rrxs. Then there exist unique qpxq, rpxq P Rrxs such that

fpxq “ gpxqqpxq ` rpxq

and where either degprpxqq ă degpgpxqq or rpxq “ 0.

Here the degree of fpxq “
ř

aixi P Rrxs is the largest n such that an ‰ 0. We omit the proof
of the division algorithm and now show that if R is a field then Rrxs is a PID.

Let I Ă Rrxs be an ideal. We must show I is principal. If I “ t0u then it is the principal
ideal p0q, so assume I ‰ p0q. Let gpxq P I be non-zero and of minimal possible degree among
all non-zero polynomials in I. Note pgpxqq Ă I. Now consider any other element fpxq P I.
Then the division algorithm gives us qpxq, rpxq P Rrxs satisyfing

fpxq “ gpxqqpxq ` rpxq

and degprpxqq ă degpgpxqq or rpxq “ 0. Suppose rpxq ‰ 0. Then

rpxq “ fpxq ´ gpxqqpxq

is in I, because fpxq, gpxq P I and qpxq P Rrxs. Furthermore, degprpxqq ă degpgpxqq. But
this contradicts our assumption that gpxq has the minimal possible degree among non-zero
polynomials in I. So we must have rpxq “ 0. Then

fpxq “ qpxqqpxq

This shows fpxq P pgpxqq. Thus I “ pgpxqq, and I is a principal ideal. This completes the
proof that all ideals in Rrxs are principal.

Finally, we remark that if you continue to add variables to your ring, and consider polyno-
mials in several variables, you will not get a PID. For example, consider

Qrxsrys “ Qrx, ys “ tpolynomials in x, y with coefficients in Qu

Then the ideal generated by the polynomials x and y, which is given by I “ txfpx, yq `

ygpx, yq ∶ fpx, yq, gpx, yq P Qrxsu, is not a principal ideal in Qrx, ys.
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