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Principal ideal domains

Last lecture we introduced the notion of a principal ideal in a commutative ring. These are
ideals in a commutative ring R that take the form

(a) =aR ={ar: re R}
A principal ideal domain (PID) is an integral domain R (a commutative ring such that ab =0

implies @ = 0 or b = 0) such that every ideal in R is principal.

The ring of integers Z is the most basic example of a PID. The ideals in Z are

0), M), ), B), )

PIDS are an important class of rings because they occur frequently and the theory of PIDS
is considerably simpler than that of general (commutative) rings.

Let R be a non-zero commutative ring. The following are equivalent:

(i) R is a field.
(ii) The only ideals in R are (0) = {0} and (1) = R.

(iii) Every homomorphism ¢: R — R’ where R’ # {0} is 1-1.

Proof. We show (i) implies (ii). Assume (i), i.e. R is a division ring. Consider an ideal I < R
with I # (0). Choose a € I, a # 0. Since R is a division ring, a=' € R. Then 1 =a~lae [
asa e Randae . Now foranybe R, wehaveb=ble [asbe Rand 1 € I. Thus (ii) holds.

Next, we show (ii) implies (iii). Assume (ii): the only ideals in R are {0} and R. Consider a
homomorphism ¢ : R — R’ where R’ # {0}. Then ker(¢) c R is a proper ideal as 1 ¢ ker(¢).
By our assumption it must be {0}. This is equivalent to ¢ being 1-1. Thus (iii) holds.

Finally, we show (iii) implies (i). Assume (iii), i.e. every homomorphism ¢ : R — R’
where R’ # {0} is 1-1. Now take a € R with a # 0. Consider the natural homomorphism
¢ : R — R/(a). Suppose R/(a) # {0}, so that ¢ is 1-1. Then ker(¢) = (0). On the other
hand, ker(¢) = (a). Then (a) = (0) implies @ = 0, a contradiction. Thus R/(a) = {0},
impying (a) = R = (1). In particular, 1 = ar for some r € R, so a has a multiplicative
inverse. We have shown that every non-zero a € R is invertible, and thus R is a field. O

A corollary of this result is the following:
If R is a field, then R is a PID.

This holds simply because the only ideals in a field R are the ideals (0) = {0} and (1) = R
which are principal ideals.
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Thus the fields Q, R, C are all examples of PIDs.

A more exotic example of a PID is the ring of Gaussian integers
Zli]={a+bi: a,beZ} cC
We will show this is a PID later.

We saw last lecture that the ring Z[v/—3] is not a PID, because we showed that the ideal
consisting of a + by/—3 with a = b (mod 2) is not principal.
Polynomial rings
Another important example involves the following construction. Let R be any ring. Define
R[x] = {polynomials in = with coefficients in R}
That is, a typical element in R[z] is an expression of the form
f(x) = apz™ + ap_12" ' + a1z + ag

where n is a non-negative integer and ay,...,a, are elements of the ring R. The sum
f(z) + g(z) and product f(z)g(x) of two such polynomials are defined in the usual fashion,
and this makes R[z] into a ring. If R is commutative, so is R[z]. Also, if R is an integral
domain, so too is the polynomial ring R[x].

If R is a field, then R[z] is a PID.
Before explaining the proof, let’s explore the consequences of this result.

The rings Q[z], R[z], C[z] are all PIDS. This means, for example, that for any ideal I < Q[x]
there exists a polynomial f(z) with rational coefficients such that I = (f(z)). The polyno-
mial f(x) is unique up to multiplication by an element in Q.

Let p be a prime. Then Z, is a field, so Z,[z] is a PID. For example, consider Zs[z],

polynomials with coefficients in Zy. Some elements in this ring are
0, 1, =, 1+z 2% 1+2° 14+zx+2%

For any ideal I  Zy[z] we can find some such element f(x) such that I = (f(z)).

The condition that R be a field in the result is necessary. For example, consider Z[z]. Of
course Z is not a field, so the result does not apply here. In fact Z[x] is not a PID: the ideal

I={2f(z) +zg(z): f(x),g(x) € Z]x]} = Z[z]

is not a principal ideal, as you can verify.
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Now let us prove the statement. We will need the following:

(Division algorithm for polynomials) Let R be a field. Consider polynomials
f(z) and g(z) # 0 in R[z]. Then there exist unique ¢(z),r(z) € R[z] such that

f(x) = g(x)q(x) + r(z)

and where either deg(r(z)) < deg(g(z)) or r(z) = 0.

Here the degree of f(z) = > a;x* € R[x] is the largest n such that a,, # 0. We omit the proof
of the division algorithm and now show that if R is a field then R[z] is a PID.

Let I < R[z] be an ideal. We must show [ is principal. If I = {0} then it is the principal
ideal (0), so assume I # (0). Let g(x) € I be non-zero and of minimal possible degree among
all non-zero polynomials in /. Note (g(x)) < I. Now consider any other element f(x) e I.
Then the division algorithm gives us ¢(x),r(x) € R[x] satisyfing

f(x) = g(x)q(z) + r(x)
and deg(r(z)) < deg(g(x)) or r(z) = 0. Suppose r(z) # 0. Then

is in I, because f(x),g(x) € I and ¢(x) € R[x]. Furthermore, deg(r(z)) < deg(g(x)). But
this contradicts our assumption that g(x) has the minimal possible degree among non-zero
polynomials in /. So we must have r(z) = 0. Then

This shows f(z) € (g(x)). Thus I = (g(z)), and [ is a principal ideal. This completes the
proof that all ideals in R[z] are principal.

Finally, we remark that if you continue to add variables to your ring, and consider polyno-
mials in several variables, you will not get a PID. For example, consider

Q[x][y] = Q[z,y] = {polynomials in z,y with coefficients in Q}

Then the ideal generated by the polynomials x and y, which is given by I = {zf(z,y) +
yg(x,y): f(x,y),9(x,y) € Q[z]}, is not a principal ideal in Q[z,y].
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