Principal ideals

In this lecture we continue studying ideals, focusing on the new concept of a principal ideal.
First we introduce some notation. Let R be a commutative ring and $a \in R$. We write

$$
a R=\{a r: r \in R\} \subset R
$$

Then $a R$ is an ideal in R. To check this, note $0=a 0 \in(a)$; if $a r, a r^{\prime} \in(a)$ then $a r-a r^{\prime}=$ $a\left(r-r^{\prime}\right) \in a R$; and if $a r \in a R$ and $r^{\prime} \in R$ then $r^{\prime}(a r)=a\left(r r^{\prime}\right) \in a R$. The ideal $a R \subset R$ is called the principal ideal generated by $a \in R$. Another common notation for $a R$ is (a).

Example: The ideals $(n)=n \mathbb{Z} \subset \mathbb{Z}$ are principal ideals.
Example: Let R be any commutative ring. Then $0 R=(0)=\{0\}$ is the zero ideal, and $1 R=(1)=R$ is the ideal which is the whole ring. These are both principal ideals.

- Let R be a commutative ring.
(i) If $I \subset R$ is an ideal and $a \in I$ then $(a) \subset I$.
(ii) If $a=u b$ for u a unit, then $(a)=(b)$.

These are straightforward from the definitions. For example, let us prove (ii). If $a=u b$ where u is a unit, then if $a r \in a R$ we have $a r=(u b) r=b(u r) \in b R$, so $(a) \subset(b)$. And if $b r \in(b)$ then $b r=\left(u^{-1} a\right) r=a\left(u^{-1} r\right) \in(a)$, so $(b) \subset(a)$. We conclude $(a)=(b)$.

Example: Consider the ring $R=\mathbb{Z}[\sqrt{-3}]$. Last lecture we defined a homomomorphism

$$
\begin{gathered}
\phi: R \longrightarrow \mathbb{Z}_{4} \\
\phi(a+b \sqrt{-3})=a+b \quad(\bmod 4)
\end{gathered}
$$

Consider the ideal $\operatorname{ker}(\phi)$. Note that $\phi(1-\sqrt{-3})=1-1=0(\bmod 4)$, so $1-\sqrt{-3} \in \operatorname{ker}(\phi)$. We obtain an inclusion of ideals $(1-\sqrt{-3}) \subset \operatorname{ker}(\phi)$.

Is it also true that $\operatorname{ker}(\phi) \subset(1-\sqrt{-3})$? To rephrase this question, let $a+b \sqrt{-3} \in \operatorname{ker}(\phi)$, i.e. $a+b \equiv 0(\bmod 4)$. Then, can we write $a+b \sqrt{-3}$ as a multiple of $1-\sqrt{-3}$, i.e

$$
a+b \sqrt{-3}=(1-\sqrt{-3})(c+d \sqrt{-3})
$$

for some $c, d \in \mathbb{Z}$? Note that the right hand side of this last equation becomes

$$
(c+3 d)+(d-c) \sqrt{-3}
$$

and so we must have $a=c+3 d$ and $b=d-c$. Solving for c, d we get $c=(a-3 b) / 4$, $d=(a+b) / 4$ which are integers because $a+b$ is a multiple of 4 . Thus the answer is "yes", so that $\operatorname{ker}(\phi) \subset(1-\sqrt{-3})$. Consequently we have

$$
\operatorname{ker}(\phi)=(1-\sqrt{-3})
$$

Thus the kernel of this homomorphism is a principal ideal, generated by $1-\sqrt{-3}$.
The following gives an example of an ideal which is not principal.
Example (non-principal ideal): We modify our homomorphism from above: define

$$
\begin{gathered}
\psi: R=\mathbb{Z}[\sqrt{-3}] \longrightarrow \mathbb{Z}_{2} \\
\psi(a+b \sqrt{-3})=a+b \quad(\bmod 2) .
\end{gathered}
$$

Note again $1-\sqrt{-3} \in \operatorname{ker}(\psi)$. We will argue that $\operatorname{ker}(\psi)$ is not principal. Suppose for a contradiction that $\operatorname{ker}(\psi)$ is principal, i.e. there is some for some $a+b \sqrt{-3} \in R$ such that

$$
\operatorname{ker}(\psi)=(a+b \sqrt{-3})
$$

In other words, $\operatorname{ker}(\psi)$ is the principal ideal generated by $a+b \sqrt{-3}$. Necessarily $a+b \equiv 0$ $(\bmod 2)$. Now since $1-\sqrt{-3} \in \operatorname{ker}(\psi)$, we must have

$$
1-\sqrt{-3}=(a+b \sqrt{-3})(c+d \sqrt{-3})
$$

for some $c, d \in \mathbb{Z}$. Note that since $\sqrt{-3}$ appears on the left side of this equation we can assume b and d are not both zero, for if they are both zero then the right hand side is a real number. Take the squared norms of both sides to obtain

$$
4=|1-\sqrt{-3}|^{2}=|a+b \sqrt{-3}|^{2}|c+d \sqrt{-3}|^{2}=\left(a^{2}+3 b^{2}\right)\left(c^{2}+3 d^{2}\right)
$$

Noting that $a, b, c, d \in \mathbb{Z}, a+b \equiv 0(\bmod 2)$, and one of b, d is non-zero, we must have $a, b, c \in\{1,-1\}$ and $d=0$; or $a \in\{2,-2\}, c \in\{1,-1\}$ and $b=d=0$. The only choices among these possibilities which solve the equation $1-\sqrt{-3}=(a+b \sqrt{-3})(c+d \sqrt{-3})$ are $a=c=1, b=-1, d=0$ and $a=c=-1, b=1, d=0$. We conclude

$$
a+b \sqrt{-3}= \pm(1-\sqrt{-3})
$$

Thus under our current assumption that $\operatorname{ker}(\psi)$ is principal, we obtain

$$
\operatorname{ker}(\psi)=(1-\sqrt{-3})=\operatorname{ker}(\phi)
$$

However, note that $\psi(2)=0(\bmod 2)$ so that $2 \in \operatorname{ker}(\psi)$, while $\phi(2)=2 \not \equiv 0(\bmod 4)$, so $2 \notin \operatorname{ker}(\phi)$. We conclude that $\operatorname{ker}(\psi) \neq \operatorname{ker}(\phi)$. We have a contradiction. Thus $\operatorname{ker}(\psi)$ cannot be a not principal ideal.

