Kernels, ideals and quotient rings

In this lecture we continue our study of rings and homomorphisms, with an emphasis on the notions of kernel, ideal and quotient ring.

Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. We define the kernel of ϕ as follows:

$$
\operatorname{ker}(\phi)=\{a \in R: \phi(a)=0\}
$$

Note that $\operatorname{ker}(\phi)$ is a subset of the ring R. However, $\phi(1)=1$, so the only way $1 \in \operatorname{ker}(\phi)$ is if $1=0$ in R^{\prime}, i.e. $R^{\prime}=\{0\}$. Thus in general $\operatorname{ker}(\phi)$ is not a subring of R. However, the kernel of a homomorphism does have the following kind of structure.

- An ideal in a ring R is a subset $I \subset R$ satisfying the following: I is a subgroup of R with respect to addition, and for all $a \in I, r \in R$ we have $r a \in I$ and $a r \in I$.

Note that an ideal is also closed under multiplication. However, it is important to note that the identity $1 \in R$ may not be in an ideal. In fact, if $1 \in I$ then for every $r \in R$ we have $r 1=r \in I$, so $R \subset I$. In conclusion, $I=R$ if and only if $1 \in I$.

In general, to check that a non-empty subset $I \subset R$ is an ideal, it suffices to show that (i) for all $a, b \in I$ we have $a+b \in I$, and (ii) for all $a \in I$ and $r \in R$ we have $r a \in I$ and $a r \in I$. Note in (ii) that if R is commutative, you only need to check $r a \in I$ since $a r=r a$.

Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then $\operatorname{ker}(\phi) \subset R$ is an ideal.

Proof. As $\phi(0)=0$ we have $\operatorname{ker}(\phi) \neq \varnothing$. Let $a, b \in \operatorname{ker}(\phi)$, i.e. $\phi(a)=\phi(b)=0$. Then

$$
\phi(a+b)=\phi(a)+\phi(b)=0+0=0
$$

and thus $a+b \in \operatorname{ker}(\phi)$. Next, let $a \in \operatorname{ker}(\phi)$ and $r \in R$. Then

$$
\phi(r a)=\phi(r) \phi(a)=\phi(r) 0=0
$$

from which it follows that $r a \in \operatorname{ker}(\phi)$. Similarly $a r \in I$. Thus $\operatorname{ker}(\phi)$ is an ideal in R.

Examples

1. Consider the homomorphism $\phi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ which is reduction mod n. Then $\phi_{n}(k)=k$ $(\bmod n)$ is zero in \mathbb{Z}_{n} if and only if k is a multiple of n. Thus

$$
\operatorname{ker}\left(\phi_{n}\right)=\{a n: a \in \mathbb{Z}\}=n \mathbb{Z} \subset \mathbb{Z}
$$

In fact every ideal in \mathbb{Z} is of the form $n \mathbb{Z}$, which is a good exercise for you to check.
2. For any ring R, consider the "zero" homomorphism $\phi: R \rightarrow\{0\}$ which sends everything to 0 . Then we have $\operatorname{ker}(\phi)=R$.
3. At the other extreme, we remark that a homomorphism $\phi: R \rightarrow R^{\prime}$ is 1-1 if and only if $\operatorname{ker}(\phi)=\{0\}$. Indeed, if ϕ is $1-1$, then $\phi(a)=0=\phi(0)$ implies $a=0$, so $\operatorname{ker}(\phi)$. Conversely, suppose $\operatorname{ker}(\phi)=\{0\}$. Then $\phi(a)=\phi(b)$ implies $0=\phi(a)-\phi(b)=\phi(a-b)$, so that $a-b \in \operatorname{ker}(\phi)=\{0\}$. We obtain $a-b=0$, i.e. $a=b$, and thus ϕ is 1-1.
4. Let us consider a more interesting example. Consider the following set:

$$
R=\mathbb{Z}[\sqrt{-3}]=\{a+b \sqrt{-3}: a, b \in \mathbb{Z}\} \subset \mathbb{C}
$$

This is a subring of the complex numbers. Indeed, we have $1 \in R$, and if $a+b \sqrt{-3}$ and $c+d \sqrt{-3} \in R$, then we have $(a+b \sqrt{-3})-(c+d \sqrt{-3})=(a-c)+(b-d) \sqrt{-3} \in R$, and also

$$
(a+b \sqrt{-3})(c+d \sqrt{-3})=(a c-3 b d)+(a d+b c) \sqrt{-3} \in R .
$$

Having verified that R is a ring, we now define a map

$$
\phi: \mathbb{Z}[\sqrt{-3}] \longrightarrow \mathbb{Z}_{4}
$$

as follows: $\phi(a+b \sqrt{-3})=a+b(\bmod 4)$. We claim this is a homomorphism. First, we note $\phi(1)=1(\bmod 4)$. Next, we show $\phi(x+y)=\phi(x)+\phi(y)$ for all $x, y \in R$:

$$
\begin{aligned}
\phi((a+b \sqrt{-3})+(c+d \sqrt{-3})) & =\phi((a+c)+(b+d) \sqrt{-3}))=(a+c)+(b+d) \\
& =(a+b)+(c+d)=\phi(a+b \sqrt{-3})+\phi(c+d \sqrt{-3}) \quad(\bmod 4)
\end{aligned}
$$

Finally, to verify the property $\phi(x) \phi(y)=\phi(x y)$ for all $x, y \in R$ we compute:

$$
\begin{aligned}
\phi((a+b \sqrt{-3})(c+d \sqrt{-3})) & =\phi((a c-3 b d)+(a d+b c) \sqrt{-3})=a c-3 b d+a d+b c \quad(\bmod 4) \\
\phi(a+b \sqrt{-3}) \phi(c+d \sqrt{-3}) & =(a+b)(c+d)=a c+b d+a d+b c \quad(\bmod 4)
\end{aligned}
$$

and they agree modulo 4 . Thus ϕ is a ring homomorphism, and it is onto. The kernel is:

$$
\operatorname{ker}(\phi)=\{a+b \sqrt{-3}: a+b \equiv 0 \quad(\bmod 4)\} \subset R
$$

Quotient rings

Let $I \subset R$ be an ideal in a ring R. Consider the additive cosets $R / I=a+I$ for $a \in R$. In other words, viewing I as a subgroup of the abelian group $(R,+)$ we are taking the quotient group R / I. We define a multiplication on these cosets: for $a+I, b+I \in R / I$ we define

$$
(a+I)(b+I)=a b+I
$$

This is well-defined because I is an ideal: if $a^{\prime}+I=a+I$ and $b^{\prime}+I=b+I$ then we have $a^{\prime}-a \in I, b^{\prime}-b \in I$. So $a^{\prime} b^{\prime}-a b=\left(a^{\prime}-a\right) b+a^{\prime}\left(b^{\prime}-b\right)$ is in I. Note we are using that $\left(a^{\prime}-a\right) b \in I$ because $a^{\prime}-a \in I$ and $b \in R$, and similarly for the other term. Thus

$$
\left(a^{\prime}+I\right)\left(b^{\prime}+I\right)=a^{\prime} b^{\prime}+I=a b+I=(a+I)(b+I)
$$

The additive identity in R / I is the coset I, while the multiplicative identity is $1+I$. The set R / I with the above described structure satisfies the axioms of a ring, and is called the quotient ring of R by the ideal I.

Given any ideal $I \subset R$ in a ring there is a canonical ring homomorphism

$$
\phi: R \longrightarrow R / I
$$

This homomorphism is onto, and $\operatorname{ker}(\phi)=I$. Conversely, every onto homomorphism can be viewed as such a homomorphism to a quotient ring. Explicitly:

- 1st Isomorphism Theorem: Let $\phi: R \rightarrow R^{\prime}$ be an onto ring homomorphism. Then we have an isomorphism of rings $R / \operatorname{ker}(\phi) \cong R^{\prime}$.

The proof is similar to the proof of the 1st isomorphism theorem for groups.
As an example, consider the homomorphism $\phi: \mathbb{Z}[\sqrt{-3}] \rightarrow \mathbb{Z}_{4}$ we defined earlier. This is onto and its kernel $I \subset \mathbb{Z}[\sqrt{-3}]$ is the set of $a+b \sqrt{-3}$ such that $a+b \equiv 0(\bmod 4)$. We obtain $\mathbb{Z}[\sqrt{-3}] / I \cong \mathbb{Z}_{4}$ as rings.

We also have analogues of the 2nd and 3rd isomorphism Theorems, now for rings:

- 2nd Isomorphism Theorem: Let S be a subring of R and $I \subset R$ an ideal of R. Then $S \cap I$ is an ideal in S and we have an isomorphism of rings:

$$
\frac{S}{S \cap I} \cong \frac{S+I}{I}
$$

In this statement, $S+I=\{a+b: a \in S, b \in I\}$ is a subring of R.

- 3rd Isomorphism Theorem: Let R be a ring and I, J ideals in R with $J \subset I$. Then we have an isomorphism of rings:

$$
\frac{R}{I} \cong \frac{R / J}{I / J}
$$

The proofs are similar in spirit to the ones for groups, and we omit them.

