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Kernels, ideals and quotient rings

In this lecture we continue our study of rings and homomorphisms, with an emphasis on the
notions of kernel, ideal and quotient ring.

Let ϕ ∶ R Ñ R1 be a ring homomorphism. We define the kernel of ϕ as follows:

kerpϕq “ ta P R ∶ ϕpaq “ 0u

Note that kerpϕq is a subset of the ring R. However, ϕp1q “ 1, so the only way 1 P kerpϕq

is if 1 “ 0 in R1, i.e. R1 “ t0u. Thus in general kerpϕq is not a subring of R. However, the
kernel of a homomorphism does have the following kind of structure.

§ An ideal in a ring R is a subset I Ă R satisfying the following: I is a subgroup
of R with respect to addition, and for all a P I, r P R we have ra P I and ar P I.

Note that an ideal is also closed under multiplication. However, it is important to note that
the identity 1 P R may not be in an ideal. In fact, if 1 P I then for every r P R we have
r1 “ r P I, so R Ă I. In conclusion, I “ R if and only if 1 P I.

In general, to check that a non-empty subset I Ă R is an ideal, it suffices to show that (i)
for all a, b P I we have a ` b P I, and (ii) for all a P I and r P R we have ra P I and ar P I.
Note in (ii) that if R is commutative, you only need to check ra P I since ar “ ra.

§ Let ϕ ∶ R Ñ R1 be a ring homomorphism. Then kerpϕq Ă R is an ideal.

Proof. As ϕp0q “ 0 we have kerpϕq ‰ H. Let a, b P kerpϕq, i.e. ϕpaq “ ϕpbq “ 0. Then

ϕpa ` bq “ ϕpaq ` ϕpbq “ 0 ` 0 “ 0

and thus a ` b P kerpϕq. Next, let a P kerpϕq and r P R. Then

ϕpraq “ ϕprqϕpaq “ ϕprq0 “ 0

from which it follows that ra P kerpϕq. Similarly ar P I. Thus kerpϕq is an ideal in R.

Examples

1. Consider the homomorphism ϕn ∶ Z Ñ Zn which is reduction mod n. Then ϕnpkq “ k
pmod nq is zero in Zn if and only if k is a multiple of n. Thus

kerpϕnq “ tan ∶ a P Zu “ nZ Ă Z

In fact every ideal in Z is of the form nZ, which is a good exercise for you to check.
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2. For any ring R, consider the “zero” homomorphism ϕ ∶ R Ñ t0u which sends everything
to 0. Then we have kerpϕq “ R.

3. At the other extreme, we remark that a homomorphism ϕ ∶ R Ñ R1 is 1-1 if and only
if kerpϕq “ t0u. Indeed, if ϕ is 1-1, then ϕpaq “ 0 “ ϕp0q implies a “ 0, so kerpϕq. Con-
versely, suppose kerpϕq “ t0u. Then ϕpaq “ ϕpbq implies 0 “ ϕpaq ´ ϕpbq “ ϕpa ´ bq, so that
a ´ b P kerpϕq “ t0u. We obtain a ´ b “ 0, i.e. a “ b, and thus ϕ is 1-1.

4. Let us consider a more interesting example. Consider the following set:

R “ Zr
?

´3s “
␣

a ` b
?

´3 ∶ a, b P Z
(

Ă C

This is a subring of the complex numbers. Indeed, we have 1 P R, and if a ` b
?

´3 and
c` d

?
´3 P R, then we have pa` b

?
´3q ´ pc` d

?
´3q “ pa´ cq ` pb´ dq

?
´3 P R, and also

pa ` b
?

´3qpc ` d
?

´3q “ pac ´ 3bdq ` pad ` bcq
?

´3 P R.

Having verified that R is a ring, we now define a map

ϕ ∶ Zr
?

´3sÐÑ Z4

as follows: ϕpa` b
?

´3q “ a` b pmod 4q. We claim this is a homomorphism. First, we note
ϕp1q “ 1 pmod 4q. Next, we show ϕpx ` yq “ ϕpxq ` ϕpyq for all x, y P R:

ϕ
`

pa ` b
?

´3q ` pc ` d
?

´3q
˘

“ ϕ
`

pa ` cq ` pb ` dq
?

´3q
˘

“ pa ` cq ` pb ` dq

“ pa ` bq ` pc ` dq “ ϕpa ` b
?

´3q ` ϕpc ` d
?

´3q pmod 4q

Finally, to verify the property ϕpxqϕpyq “ ϕpxyq for all x, y P R we compute:

ϕ
`

pa ` b
?

´3qpc ` d
?

´3q
˘

“ ϕ
`

pac ´ 3bdq ` pad ` bcq
?

´3
˘

“ ac ´ 3bd ` ad ` bc pmod 4q

ϕpa ` b
?

´3qϕpc ` d
?

´3q “ pa ` bqpc ` dq “ ac ` bd ` ad ` bc pmod 4q

and they agree modulo 4. Thus ϕ is a ring homomorphism, and it is onto. The kernel is:

kerpϕq “ ta ` b
?

´3 ∶ a ` b ” 0 pmod 4qu Ă R

Quotient rings

Let I Ă R be an ideal in a ring R. Consider the additive cosets R{I “ a ` I for a P R. In
other words, viewing I as a subgroup of the abelian group pR,`q we are taking the quotient
group R{I. We define a multiplication on these cosets: for a ` I, b ` I P R{I we define

pa ` Iqpb ` Iq “ ab ` I

This is well-defined because I is an ideal: if a1 ` I “ a ` I and b1 ` I “ b ` I then we have
a1 ´ a P I, b1 ´ b P I. So a1b1 ´ ab “ pa1 ´ aqb ` a1pb1 ´ bq is in I. Note we are using that
pa1 ´ aqb P I because a1 ´ a P I and b P R, and similarly for the other term. Thus

pa1 ` Iqpb1 ` Iq “ a1b1 ` I “ ab ` I “ pa ` Iqpb ` Iq
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The additive identity in R{I is the coset I, while the multiplicative identity is 1 ` I. The
set R{I with the above described structure satisfies the axioms of a ring, and is called the
quotient ring of R by the ideal I.

Given any ideal I Ă R in a ring there is a canonical ring homomorphism

ϕ ∶ R ÐÑ R{I

This homomorphism is onto, and kerpϕq “ I. Conversely, every onto homomorphism can be
viewed as such a homomorphism to a quotient ring. Explicitly:

§ 1st Isomorphism Theorem: Let ϕ ∶ R Ñ R1 be an onto ring homomorphism.
Then we have an isomorphism of rings R{kerpϕq – R1.

The proof is similar to the proof of the 1st isomorphism theorem for groups.

As an example, consider the homomorphism ϕ ∶ Zr
?

´3s Ñ Z4 we defined earlier. This is
onto and its kernel I Ă Zr

?
´3s is the set of a ` b

?
´3 such that a ` b ” 0 pmod 4q. We

obtain Zr
?

´3s{I – Z4 as rings.

We also have analogues of the 2nd and 3rd isomorphism Theorems, now for rings:

§ 2nd Isomorphism Theorem: Let S be a subring of R and I Ă R an ideal of R.
Then S X I is an ideal in S and we have an isomorphism of rings:

S

S X I
–

S ` I

I

In this statement, S ` I “ ta ` b ∶ a P S, b P Iu is a subring of R.

§ 3rd Isomorphism Theorem: Let R be a ring and I, J ideals in R with J Ă I.
Then we have an isomorphism of rings:

R

I
–

R{J

I{J

The proofs are similar in spirit to the ones for groups, and we omit them.
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