More ring basics

In this lecture we continue our study of the basic properties of rings.
Let us begin with an example. The ring of quaternions \mathbb{H} is the set of expressions

$$
x=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}
$$

where $a, b, c, d \in \mathbb{R}$, and where addition and multiplication are done in a similar fashion to the complex numbers, but where we have the relations $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1$ and $\mathbf{i j}=\mathbf{k}$. Note a consequence is that $\mathbf{i j}=-\mathbf{j} \mathbf{i}, \mathbf{j} \mathbf{k}=-\mathbf{k j}, \mathbf{k i}=-\mathbf{i} \mathbf{k}$. In particular, \mathbb{H} is not a commutative ring.

For another example, consider the quaternions $x=1+2 \mathbf{j}$ and $y=\mathbf{i}-\mathbf{k}$. Then

$$
\begin{aligned}
& x y=(1+2 \mathbf{j})(\mathbf{i}-\mathbf{k})=(\mathbf{i}-\mathbf{k})+2 \mathbf{j}(\mathbf{i}-\mathbf{k})=\mathbf{i}-\mathbf{k}-2 \mathbf{k}-2 \mathbf{i}=-\mathbf{i}-3 \mathbf{k} \\
& y x=(\mathbf{i}-\mathbf{k})(1+2 \mathbf{j})=\mathbf{i}(1+2 \mathbf{j})-\mathbf{k}(1+2 \mathbf{j})=\mathbf{i}+2 \mathbf{k}-\mathbf{k}+2 \mathbf{i}=3 \mathbf{i}+\mathbf{k}
\end{aligned}
$$

The norm of a quaternion $x=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ is given by the non-negative real number

$$
|x|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

The conjugate of $x \in \mathbb{H}$ is defined by $\bar{x}=a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k}$. We compute

$$
x \bar{x}=(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})(a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k})=a^{2}+b^{2}+c^{2}+d^{2}=|x|^{2}
$$

As a consequence, if $x \neq 0$ (so that $|x| \neq 0$), we have $x y=1$ where $y=\left(\bar{x} /|x|^{2}\right)$. Clearly y is a quaternion, and we have found a multiplicative inverse for every nonzero $x \in \mathbb{H}$. Thus:

- The ring of quaternions \mathbb{H} is a non-commutative division ring.

Another example of a non-commutative ring that we saw earlier was the ring of 2×2 matrices. In fact the quaternions fit into this framework as we will see shortly. For now we continue to introduce fundamental notions in ring theory.

A subring of a ring R is a subset $S \subset R$ which contains 0,1 and with the operations + and \times inherited from R is a ring in its own right. Note that a subring must be closed under the operations + and \times. The following is a simple test of whether a subset is a subring.

- $S \subset R$ is a subring if and only if the multiplicative identity 1 is in S and for all $a, b \in S$ we have $a b \in S$ and $a-b \in S$.

The proof is straightforward and omitted. For example, the inclusions $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$ exhibit a chain of subrings, each one contained in the next.

A homomorphism $\phi: R \rightarrow R^{\prime}$ is a map of sets which satisfies $\phi(1)=1^{1}$ and for all $a, b \in R$:

$$
\phi(a b)=\phi(a) \phi(b), \quad \phi(a+b)=\phi(a)+\phi(b)
$$

[^0]A homomorphism of rings is an isomorphism if it is 1-1 and onto.
The map $\phi: R \rightarrow R$ given by $\phi(a)=a$ for all $a \in R$ is a homomorphism, called the identity homomorphism. The map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ which is reduction $\bmod n$ is an onto ring homomorphism.

For a more interesting example, let us define a map

$$
\phi: \mathbb{H} \longrightarrow \mathrm{M}_{2}(\mathbb{C})
$$

where the ring on the right consists of 2×2 complex matrices. We define ϕ by

$$
\phi(\mathbf{i})=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \phi(\mathbf{j})=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \phi(\mathbf{k})=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right),
$$

and of course $\phi(1)$ is the identity matrix. These relations determine ϕ completely if extend linearly over the real numbers. Explicitly, this means that for a general quaternion,

$$
\phi(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})=a \phi(1)+b \phi(\mathbf{i})+c \phi(\mathbf{j})+d \phi(\mathbf{k})=\left(\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right)
$$

From this we have $\phi(x+y)=\phi(x)+\phi(y)$ for all $x, y \in \mathbb{H}$. To show $\phi(x y)=\phi(x) \phi(y)$ is a straightforward computation. Note that special cases of this include the fact that the matrices $\phi(\mathbf{i})^{2}, \phi(\mathbf{j})^{2}, \phi(\mathbf{k})^{2}$ are minus the identity matrix, and also

$$
\phi(\mathbf{i} \mathbf{j})=\phi(\mathbf{k})=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\phi(\mathbf{i}) \phi(\mathbf{j})
$$

You can check that ϕ is $1-1$, but it is not onto.

Let $\phi: R \rightarrow S$ be a ring homomorphism. Then

1. The map ϕ restricts to a group homomorphism $\phi^{\times}:\left(R^{\times}, \times\right) \rightarrow\left(S^{\times}, \times\right)$.
2. If ϕ is an isomorphism then ϕ^{\times}is an isomorphism of groups.
3. If ϕ is an isomorphism, and R is commutative, then so is S.

It also easily follows that if ϕ is an isomorphism and R is an integral domain (resp. division ring, field) then S is an integral domain (resp. division ring, field).

Consider the ring homomorphism $\phi: \mathbb{H} \rightarrow \mathrm{M}_{2}(\mathbb{C})$ from above. We obtain a homomorphism of groups $\phi^{\times}: \mathbb{H}^{\times} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$. It is instructive to consider the subgroup

$$
G=\left\{x \in \mathbb{H}^{\times}:|x|=1\right\}
$$

of unit quaternions, with quaternion multiplication. Note that this group $G \subset \mathbb{H}^{\times}$is in 1-1 correspondence with the 3-dimensional sphere

$$
S^{3}=\left\{(a, b, c, d) \in \mathbb{R}^{4}: a^{2}+b^{2}+c^{2}+d^{2}=1\right\} \subset \mathbb{R}^{4}
$$

Indeed, the quaternion $x \in G$ where $x=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ corresponds to the point $(a, b, c, d) \in S^{3}$. Thus we have defined a group structure on the 3 -sphere!

This is analogous to the unit complex numbers $U(1) \subset \mathbb{C}^{\times}$being in 1-1 correspondence with the unit circle S^{1} in \mathbb{R}^{2}, which is defined to be

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}
$$

In this case the unit complex number $z=x+y i$ corresponds to $(x, y) \in S^{1}$. Thus complex multiplication defines a group structure on the " 1 -sphere" S^{1} in this way.

More generally we can define the n-sphere to be the following subset of points in \mathbb{R}^{n+1} :

$$
S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\}
$$

A natural question arises: which spheres S^{n} have group structures? To put this question on more firm footing we require that the group operation $S^{n} \times S^{n} \rightarrow S^{n}$ is the restriction of a differentiable function $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$.

We have seen such group structures on S^{1} and S^{3} above, using complex and quaternion multiplication respectively. A somewhat uninteresting example is that of the 0 -sphere: $S^{0}=\{1,-1\} \subset \mathbb{R}^{1}$ is a group, in fact a subgroup of \mathbb{R}^{\times}. Remarkably:

- The only spheres that admit (differentiable) group structures are S^{0}, S^{1}, S^{3}.

The proof is outside the scope of this class and is a result in the theory of Lie groups.

[^0]: ${ }^{1}$ Some references do not require this condition.

