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More ring basics

In this lecture we continue our study of the basic properties of rings.

Let us begin with an example. The ring of quaternions H is the set of expressions

x “ a ` bi ` cj ` dk

where a, b, c, d P R, and where addition and multiplication are done in a similar fashion to
the complex numbers, but where we have the relations i2 “ j2 “ k2 “ ´1 and ij “ k. Note a
consequence is that ij “ ´ji, jk “ ´kj, ki “ ´ik. In particular, H is not a commutative ring.

For another example, consider the quaternions x “ 1 ` 2j and y “ i ´ k. Then

xy “ p1 ` 2jqpi ´ kq “ pi ´ kq ` 2jpi ´ kq “ i ´ k ´ 2k ´ 2i “ ´i ´ 3k

yx “ pi ´ kqp1 ` 2jq “ ip1 ` 2jq ´ kp1 ` 2jq “ i ` 2k ´ k ` 2i “ 3i ` k

The norm of a quaternion x “ a ` bi ` cj ` dk is given by the non-negative real number

|x| “
?
a2 ` b2 ` c2 ` d2

The conjugate of x P H is defined by x “ a ´ bi ´ cj ´ dk. We compute

xx “ pa ` bi ` cj ` dkqpa ´ bi ´ cj ´ dkq “ a2 ` b2 ` c2 ` d2 “ |x|2

As a consequence, if x ‰ 0 (so that |x| ‰ 0), we have xy “ 1 where y “ px{|x|2q. Clearly y is
a quaternion, and we have found a multiplicative inverse for every nonzero x P H. Thus:

§ The ring of quaternions H is a non-commutative division ring.

Another example of a non-commutative ring that we saw earlier was the ring of 2 ˆ 2 ma-
trices. In fact the quaternions fit into this framework as we will see shortly. For now we
continue to introduce fundamental notions in ring theory.

A subring of a ring R is a subset S Ă R which contains 0,1 and with the operations ` and
ˆ inherited from R is a ring in its own right. Note that a subring must be closed under the
operations ` and ˆ. The following is a simple test of whether a subset is a subring.

§ S Ă R is a subring if and only if the multiplicative identity 1 is in S and for
all a, b P S we have ab P S and a ´ b P S.

The proof is straightforward and omitted. For example, the inclusions Z Ă Q Ă R Ă C Ă H
exhibit a chain of subrings, each one contained in the next.

A homomorphism ϕ ∶ R Ñ R1 is a map of sets which satisfies ϕp1q “ 11 and for all a, b P R:

ϕpabq “ ϕpaqϕpbq, ϕpa ` bq “ ϕpaq ` ϕpbq

1Some references do not require this condition.
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A homomorphism of rings is an isomorphism if it is 1-1 and onto.

The map ϕ ∶ R Ñ R given by ϕpaq “ a for all a P R is a homomorphism, called the identity ho-
momorphism. The map ϕ ∶ Z Ñ Zn which is reduction mod n is an onto ring homomorphism.

For a more interesting example, let us define a map

ϕ ∶ HÐÑ M2pCq

where the ring on the right consists of 2 ˆ 2 complex matrices. We define ϕ by

ϕpiq “

ˆ

i 0
0 ´i

˙

, ϕpjq “

ˆ

0 1
´1 0

˙

, ϕpkq “

ˆ

0 i
i 0

˙

,

and of course ϕp1q is the identity matrix. These relations determine ϕ completely if extend
linearly over the real numbers. Explicitly, this means that for a general quaternion,

ϕpa ` bi ` cj ` dkq “ aϕp1q ` bϕpiq ` cϕpjq ` dϕpkq “

ˆ

a ` bi c ` di
´c ` di a ´ bi

˙

From this we have ϕpx ` yq “ ϕpxq ` ϕpyq for all x, y P H. To show ϕpxyq “ ϕpxqϕpyq is
a straightforward computation. Note that special cases of this include the fact that the
matrices ϕpiq2, ϕpjq2, ϕpkq2 are minus the identity matrix, and also

ϕpijq “ ϕpkq “

ˆ

0 i
i 0

˙

“

ˆ

i 0
0 ´i

˙ ˆ

0 1
´1 0

˙

“ ϕpiqϕpjq

You can check that ϕ is 1-1, but it is not onto.

§ Let ϕ ∶ R Ñ S be a ring homomorphism. Then

1. The map ϕ restricts to a group homomorphism ϕˆ ∶ pRˆ,ˆq Ñ pSˆ,ˆq.

2. If ϕ is an isomorphism then ϕˆ is an isomorphism of groups.

3. If ϕ is an isomorphism, and R is commutative, then so is S.

It also easily follows that if ϕ is an isomorphism and R is an integral domain (resp. division
ring, field) then S is an integral domain (resp. division ring, field).

Consider the ring homomorphism ϕ ∶ H Ñ M2pCq from above. We obtain a homomorphism
of groups ϕˆ ∶ Hˆ Ñ GL2pCq. It is instructive to consider the subgroup

G “ tx P Hˆ ∶ |x| “ 1u

of unit quaternions, with quaternion multiplication. Note that this group G Ă Hˆ is in 1-1
correspondence with the 3-dimensional sphere

S3 “ tpa, b, c, dq P R4 ∶ a2 ` b2 ` c2 ` d2 “ 1u Ă R4
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Indeed, the quaternion x P G where x “ a`bi`cj`dk corresponds to the point pa, b, c, dq P S3.
Thus we have defined a group structure on the 3-sphere!

This is analogous to the unit complex numbers Up1q Ă Cˆ being in 1-1 correspondence with
the unit circle S1 in R2, which is defined to be

S1 “ tpx, yq P R2 ∶ x2 ` y2 “ 1u Ă R2

In this case the unit complex number z “ x ` yi corresponds to px, yq P S1. Thus complex
multiplication defines a group structure on the “1-sphere” S1 in this way.

More generally we can define the n-sphere to be the following subset of points in Rn`1:

Sn “ tpx1, . . . , xn`1q P Rn`1 ∶ x2
1 `⋯` x2

n`1 “ 1u

A natural question arises: which spheres Sn have group structures? To put this question on
more firm footing we require that the group operation Sn ˆ Sn Ñ Sn is the restriction of a
differentiable function Rn`1 ˆ Rn`1 Ñ Rn`1.

We have seen such group structures on S1 and S3 above, using complex and quaternion
multiplication respectively. A somewhat uninteresting example is that of the 0-sphere:
S0 “ t1,´1u Ă R1 is a group, in fact a subgroup of Rˆ. Remarkably:

§ The only spheres that admit (differentiable) group structures are S0, S1, S3.

The proof is outside the scope of this class and is a result in the theory of Lie groups.
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