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More ring basics

In this lecture we continue our study of the basic properties of rings.

Let us begin with an example. The ring of quaternions H is the set of expressions
r=a+bi+cj+dk

where a,b,c,d € R, and where addition and multiplication are done in a similar fashion to
the complex numbers, but where we have the relations i = j2 = k? = —1 and ij = k. Note a
consequence is that ij = —ji, jk = —kj, ki = —ik. In particular, H is not a commutative ring.

For another example, consider the quaternions x =1 + 2j and y =i —k. Then
ry=(1+2j)(i—-k)=(>G1i-k)+2j(i—k)=i—k—-2k—2i=-i—3k
yr=>1-k)(1+2j)=i(1+2j)—k(1+2j)=i+2k—k+2i=3i+k

The norm of a quaternion x = a + bi + ¢j + dk is given by the non-negative real number

2] = Va2 + b2 + 2+ d?

The conjugate of x € H is defined by T = a — bi — ¢j — dk. We compute
2T = (a +bi+cj+dk)(a—bi—cj—dk) =a®+b*+* +d* = |z|?

As a consequence, if x # 0 (so that |z| # 0), we have zy = 1 where y = (z/|z|?). Clearly y is
a quaternion, and we have found a multiplicative inverse for every nonzero x € H. Thus:

The ring of quaternions H is a non-commutative division ring.

Another example of a non-commutative ring that we saw earlier was the ring of 2 x 2 ma-
trices. In fact the quaternions fit into this framework as we will see shortly. For now we
continue to introduce fundamental notions in ring theory.

A subring of a ring R is a subset S © R which contains 0,1 and with the operations + and
x inherited from R is a ring in its own right. Note that a subring must be closed under the
operations + and x. The following is a simple test of whether a subset is a subring.

S < R is a subring if and only if the multiplicative identity 1 is in S and for
all a,be S we have abe S and a —be S.

The proof is straightforward and omitted. For example, the inclusions Zc Qc Rc Cc H
exhibit a chain of subrings, each one contained in the next.

A homomorphism ¢ : R — R’ is a map of sets which satisfies ¢(1) = 1! and for all a,b € R:
¢(ab) = ¢(a)p(b), ¢la+b) = ¢(a) + ¢(b)

!Some references do not require this condition.
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A homomorphism of rings is an isomorphism if it is 1-1 and onto.

The map ¢ : R — R given by ¢(a) = a for all a € R is a homomorphism, called the identity ho-
momorphism. The map ¢ : Z — 7Z,, which is reduction mod n is an onto ring homomorphism.

For a more interesting example, let us define a map
¢ :H— M(C)

where the ring on the right consists of 2 x 2 complex matrices. We define ¢ by

o= (5 %) ew=( 5 5) ew-(0 )

and of course ¢(1) is the identity matrix. These relations determine ¢ completely if extend
linearly over the real numbers. Explicitly, this means that for a general quaternion,

a+ b c+di)

dla+bi+cj+dk) =ap(l) +bp(i) + cod(j) + do(k) = < et di a—bi

From this we have ¢(z + y) = ¢(x) + ¢(y) for all z,y € H. To show ¢(xy) = ¢(x)o(y) is
a straightforward computation. Note that special cases of this include the fact that the
matrices ¢(i)2, ¢(j)?, ¢(k)? are minus the identity matrix, and also

o(ij) = olk) = (? 5) —(5 ° ) ( Y é>—¢<i>¢<j>
You can check that ¢ is 1-1, but it is not onto.

Let ¢: R — S be a ring homomorphism. Then
1. The map ¢ restricts to a group homomorphism ¢* : (R*, x) — (S*, x).
2. If ¢ is an isomorphism then ¢* is an isomorphism of groups.

3. If ¢ is an isomorphism, and R is commutative, then so is S.

It also easily follows that if ¢ is an isomorphism and R is an integral domain (resp. division
ring, field) then S is an integral domain (resp. division ring, field).

Consider the ring homomorphism ¢ : H — My(C) from above. We obtain a homomorphism
of groups ¢* : H* — GLy(C). It is instructive to consider the subgroup

G={reH": |z|=1}

of unit quaternions, with quaternion multiplication. Note that this group G < H* is in 1-1
correspondence with the 3-dimensional sphere

S3 ={(a,b,c,d)eR*:a* + ¥+ +d* =1} cR*
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Indeed, the quaternion z € G where x = a+bi+cj+dk corresponds to the point (a, b, c,d) € S3.
Thus we have defined a group structure on the 3-sphere!

This is analogous to the unit complex numbers U(1) € C* being in 1-1 correspondence with
the unit circle ST in R2, which is defined to be

S'={(x,y) eR?: 22 +9? =1} c R?

In this case the unit complex number z = x + yi corresponds to (z,y) € S*. Thus complex
multiplication defines a group structure on the “I-sphere” S! in this way.

More generally we can define the n-sphere to be the following subset of points in R?*1:
S ={(z1,...,Tpy1) ER"™: 2F b 22 =1}
A natural question arises: which spheres S™ have group structures? To put this question on

more firm footing we require that the group operation S™ x S™ — S™ is the restriction of a
differentiable function R**! x Rr+1 — Re+1

We have seen such group structures on S' and S? above, using complex and quaternion
multiplication respectively. A somewhat uninteresting example is that of the 0-sphere:
S0 ={1,—1} < R! is a group, in fact a subgroup of R*. Remarkably:

The only spheres that admit (differentiable) group structures are S°, S, S3.

The proof is outside the scope of this class and is a result in the theory of Lie groups.
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