
MTH 461: Survey of Modern Algebra, Spring 2024 Note 20

The Rubik’s cube group

Today we will study the Rubik’s cube using some of the group theory we have developed.
During lecture, I’ll hand out Rubik’s cubes and you should play along. If you don’t know
how to solve the cube, however, be careful not to scramble it!

Let’s begin with a top (on the left) and bottom (on the right) view of the Rubik’s cube:

We label the 6 faces of the cube F (front), B (back), U (up), D (down), L (left), R (right).
To each face we associate a symmetry of the cube which is a 90˝ clockwise rotation of that
face, if you are facing the face. For example, we have the moves R and U´1:

And R2, for example, is 180˝ rotation of the right face. We write G for the Rubik’s cube
group, which is the group of symmetries generated by the moves F,B,U,D,L,R.

Our convention is that the expression LU´1RD means: first do D, then do R, then U´1,
and then L. Warning: This is opposite the order in which Rubik’s cube enthusiasts write
moves, but it goes better with our conventions in group theory.

Let us try to understand the group G. First, compare the following two sequences of moves:
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This shows that U´1R ‰ RU´1. In particular G is non-abelian.

However we can find non-trivial abelian subgroups. Here’s an example. Consider the sub-
group generated by R. This is clearly xRy “ te,R,R2,R3u as R is a 90˝ rotation of a face.
So we get a cyclic subgroup of order 4, which is isomorphic to Z4. Similarly, xLy – Z4. Note
also that L and R commute as these two faces are not sharing any part of the cube. From
this we get a subgroup xR,Ly Ă G isomorphic to Z4 ˆ Z4.

Let’s look at the orders of some elements in G. Check with your cube the following:

ordpR´1URq “ 4, ordpUR´1URq “ 5

As another example, you can check (after a few minutes!) that ordpURq “ 105. For a more
extravagant example, one can check that

ordpB´1UB´1F 2Rq “ 1260,

although I suggest you don’t waste your time doing it! This order, 1260, is in fact the highest
possible order of any element in G.

How should we better understand G? One way to is map it into a symmetric group, just as
we’ve done for the triangle and the tetrahedron. Label the “sticker positions” of the cube:

In the picture we labelled one face, but continuing in this fashion we will get p9qp6q “ 54
labels. Each move a P G is determined by how these sticker positions are permuted, and to
each such a we get permutation in S54. This gives a 1-1 homomorphism G Ñ S54.
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But we can do better! Note each a P G fixes the middle sticker position on each face.

So forget about these. We only label the other sticker positions, of which there are 48.
This gives a homomorphism G Ñ S48. Note that 48! « 1061. However it turns out
|G| “ 8!12!21037 « 4 ˆ 1019, which is very large but much smaller than |S48| “ 48!.

How can you solve the Rubik’s cube? The basic strategy is as follows: (1) first, come up with
some basic moves that permute only a few parts of the cube; (2) use these basic moves to
progressively solve parts of the cube. (In reality it is best to just learn one of the algorithms
that solves it.) We won’t solve the cube but rather aim to understand G better.

But let’s focus on (1) for a moment. Here is a “basic move” called an edge 3-cycle:

Both top and bottom views are shown. It is called an edge 3-cycle because exactly 3 pieces
(subcubes) are permuted. A representation of a P G is given by a “ F 2UL´1RF 2LR´1UF 2.

Having shown that we can permute 3 edge cubes as above, we might suspect we can permute
any given set of subcubes as we like. Not true! For example, consider the configuration:
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This configuration has exactly 2 corner cubes swapped. To show this is impossible, we in-
troduce another homomorphism. Consider subcube positions which are not in the middles
of faces. You can count there are 20 such non-middle subcube positions in the cube.

Next, label these subcube positions 1, . . . ,20 in any fashion. By seeing how a symmetry
a P G permutes these 20 subcube positions, we obtain a homomorphism

ϕ ∶ GÐÑ S20

For example, take the subcubes starting on the right face at a corner and label them 1, . . . ,8
in a clockwise fashion (and label the others arbitrarily) then ϕpRq “ p1357qp2468q. Note this
permutation is even. A similar computation shows ϕpaq is even for F,B,U,D,L. But every
element in G can be written as a composition of these moves, so we have shown:

§ The homomorphism ϕ ∶ G Ñ S20 has impϕq Ă A20.

In other words, for any symmetry a P G, the permutation ϕpaq is even. Now the proof
of why the configuration drawn previously is impossible is easy! Just note that it swaps
exactly 2 subcubes, so the picture corresponds to a transposition in S20, which is odd, and
this contradicts what we have just found.

We can also prove that the following configuration is impossible:

Note that this configuration does not swap any subcubes; it only changes the “orientation”
of exactly one subcube. It is in fact in the kernel of the homomorphism ϕ, so that homo-
morphism will not help us here.

We can define another homomorphism as follows. Notice that each edge piece (not a corner)
has 2 stickers. Collecting all such pairs of stickers, there are 24. Labelling these 1, . . . ,24
and seeing how each a P G permutes these, we obtain a homomorphism ψ ∶ G Ñ S24. Again,
it is not hard to show that ψpRq is even, and the same is true for F,B,U,D,L, and thus for
all a P G. On the other hand, the above drawn configuration corresponds to a transposition
which swaps exactly 2 of these edge stickers, which is impossible!
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