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Cayley’s Theorem

How can we understand all finite groups? One way, which we return to later, is to try and
classify, i.e. list, all groups up to isomorphism. Here is another way to “understand all finite
groups”: show that all such groups are isomorphic to subgroups of groups we understand.
This can be done using the following theorem.

§ Cayley’s Theorem: Let G be a finite group, and |G| “ n. Then there is a 1-1
homomorphism ϕ ∶ G Ñ Sn. In particular, G is isomorphic to a subgroup of Sn.

Before proving this theorem, let’s see why it does what we want. Given any homomorphism
ϕ ∶ G Ñ G1 we can define a new homomorphism ψ ∶ G Ñ impϕq by setting ψpaq “ ϕpaq for
all a P G; we have only changed the definition of the target group. The homomorphism
ψ ∶ G Ñ impϕq has the advantage that it is onto. The 1st Isomorphism Theorem for ψ yields

G{kerpϕq – impϕq

In particular, when ϕ is 1-1, we have G – impϕq. Now return to the statement of Cayley’s
Theorem, which gives a 1-1 homomorphism ϕ ∶ G Ñ Sn. Then G – impϕq, and impϕq Ă Sn

is a subgroup of Sn. Thus G is isomorphic to a subgroup of Sn.

Proof. Label elements of G as a1, a2, . . . , an. Let a P G. (This a is among the ai, but we will
just write a for it.) Define a function σa ∶ t1, . . . , nu Ñ t1, . . . , nu as follows:

aai “ aσapiq

In other words, given i P t1, . . . , nu, we take the product aai P G, and it is equal to some ak
where k P t1, . . . , nu; we let σapiq “ k. The map σa is 1-1: suppose σapiq “ σapjq. Then

aai “ aaj Ôñ ai “ aj Ôñ i “ j

The map σa is onto: suppose k P t1, . . . , nu. Let ai be such that a “ aka
´1
i . Then

aai “ aka
´1
i ai “ ak Ôñ σapiq “ k

Thus σa is 1-1 and onto, and therefore a permutation, i.e. σa P Sn.

Now we are in a position to define the sought after homomorphism:

ϕ ∶ GÐÑ Sn

For a P G we declare ϕpaq “ σa. We check this is a homomorphism. Let a, b P G. We must
compare ϕpaqϕpbq “ σa ˝ σb with ϕpabq “ σab. We compute

aσabpiq “ pabqai “ apbaiq “ aaσbpiq “ aσapσbpiqq

for any i P t1, . . . , nu, which shows that σab “ σa ˝ σb. To show ϕ is 1-1, we compute its
kernel. Suppose ϕpaq “ e, i.e. σapiq “ i for all i P t1, . . . , nu. This means

aai “ aσapiq “ ai

which implies a “ e. Thus kerpϕq “ teu and therefore ϕ is 1-1.
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Let us see Cayley’s Theorem in action. To clarify the main point, take G to be an interesting
group which is not defined using permutations. Let us introduce the quaternion group

Q8 “ t 1,´1, i,´i, j,´j, k,´ku

of order 8, with the relations that ´1 commutes with everything, p´1q2 “ 1, and also
i2 “ j2 “ k2 “ ´1, and ij “ k. These relations generate the Cayley table of Q8 as follows:

1 ´1 i ´i j ´j k ´k

1 1 ´1 i ´i j ´j k ´k

´1 ´1 1 ´i i ´j j ´k k

i i ´i ´1 1 k ´k ´j j

´i ´i i 1 ´1 ´k k j ´j

j j ´j ´k k ´1 1 i ´i

´j ´j j k ´k 1 ´1 ´i i

k k ´k j ´j ´i i 1 ´1

´k ´k k ´j j i ´i ´1 1

Cayley’s Theorem gives us a way to realize Q8 as a subgroup of the symmetric group S8.
The construction is as follows. First we label the elements of Q8 as a1, . . . , a8. For example,
we may use the following labelling (although any labelling will do):

a1 “ 1, a2 “ ´1, a3 “ i, a4 “ ´i, a5 “ j, a6 “ ´j, a7 “ k, a8 “ ´k

Next, given an element a P Q8 we define the associated permuation σa P S8 by the relation

aai “ aj ðñ σapiq “ j

Let us spell this out for the element a “ i P Q8. We have

aa1 “ piqp1q “ i “ a3 aa2 “ piqp´1q “ ´i “ a4

aa3 “ piqpiq “ ´1 “ a2 aa4 “ piqp´iq “ 1 “ a1

aa5 “ piqpjq “ k “ a7 aa6 “ piqp´jq “ ´k “ a8

aa7 “ piqpkq “ ´j “ a6 aa8 “ piqp´kq “ j “ a5

These relations then determine the permutation σa “ σi as follows:

σap1q “ 3, σap2q “ 4, σap3q “ 2, σap4q “ 1,

σap5q “ 7, σap6q “ 8, σap7q “ 6, σap8q “ 5

All together we may write our permutation σa “ σi in cycle notation as

σi “ p1324qp5768q P S8
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We may proceed to do this for each element a P Q8. We get the following subgroup of S8:

te, p12qp34qp56qp78q, p1324qp5768q, p1423qp5867q,

p1526qp3847q, p1625qp3748q, p1728qp3546q, p1827qp3645qu

The elements are listed in the order corresponding to the above ordering of the elements of
Q8. In summary, Q8 is isomorphic to the subgroup of S8 displayed above.

Cayley’s Theorem is conceptually very important: it says that every finite group, however
abstractly defined, is isomorphic to a subgroup of some symmetric group, a very concrete
type of group that we understand how to work with. On the other hand, Cayley’s Theorem
is often not practical: it realizes our group as a subgroup of a generally very large group.
For example, in the example above, Q8 has order 8 and we realized it as a subgroup of S8

which is of order 8! “ 40320.

The following is a generalization of Cayley’s Theorem.

§ Let G be a group, H Ă G a subgroup, and suppose rG ∶ Hs “ n is finite. Then
there is a homomorphism ϕ ∶ G Ñ Sn. Furthermore, kerpϕq is equal to the largest
normal subgroup of G which is contained in H.

To obtain Cayley’s Theorem as a special case, let H “ teu. Then n “ rG ∶ teus “ |G|. The
largest normal subgroup contained in teu is of course teu, and so kerpϕq “ teu, i.e. ϕ is 1-1.

The proof of this generalization is similar to that of Cayley’s Theorem. We list the distinct
cosets in G{H as a1H, . . . , anH. Then define ϕ ∶ G Ñ Sn by ϕpaq “ σa where σa P Sn is
determined by the relation: σapiq “ j if and only if aaiH “ ajH, where i, j P t1, . . . , nu. The
details for the rest of the proof are left as an exercise.

§ Let G be a finite group, H Ă G a proper subgroup, and suppose |G| does not
divide rG ∶Hs!. Then H contains a non-trivial normal subgroup of G.

This is a corollary of the above theorem. Suppose H does not contain a non-trivial normal
subgroup. Then the homomorphism ϕ ∶ G Ñ Sn from the above theorem, where n “ rG ∶Hs,
must have kerpϕq “ teu. Thus G – impϕq is isomorphic to a subgroup of Sn. By Lagrange’s
Theorem, we must have that |G| divides |Sn| “ n! “ rG ∶Hs!.
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