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Cayley’s Theorem

How can we understand all finite groups? One way, which we return to later, is to try and
classify, i.e. list, all groups up to isomorphism. Here is another way to “understand all finite
groups”: show that all such groups are isomorphic to subgroups of groups we understand.
This can be done using the following theorem.

Cayley’s Theorem: Let G be a finite group, and |G| = n. Then there is a 1-1
homomorphism ¢ : G — S,,. In particular, GG is isomorphic to a subgroup of 5,,.

Before proving this theorem, let’s see why it does what we want. Given any homomorphism
¢ : G — G' we can define a new homomorphism v : G — im(¢) by setting ¥(a) = ¢(a) for
all @ € GG; we have only changed the definition of the target group. The homomorphism
Y : G — im(¢) has the advantage that it is onto. The 1st Isomorphism Theorem for ¢ yields

G/ker() = im(9)

In particular, when ¢ is 1-1, we have G =~ im(¢). Now return to the statement of Cayley’s
Theorem, which gives a 1-1 homomorphism ¢ : G — S,,. Then G = im(¢), and im(¢) < S,
is a subgroup of S,,. Thus G is isomorphic to a subgroup of S,,.

Proof. Label elements of G as aj,as,...,a,. Let a € G. (This a is among the a;, but we will
just write a for it.) Define a function o, : {1,...,n} — {1,...,n} as follows:

aa; = aaa(i)

In other words, given i € {1,...,n}, we take the product aa; € G, and it is equal to some ay,
where k€ {1,...,n}; we let 0,(¢) = k. The map o, is 1-1: suppose 0,(i) = 0,(j). Then

aa; = aa; == a;=aqj — Z:j
The map o, is onto: suppose k € {1,...,n}. Let a; be such that a = aga; '. Then
aa; = akai_lai =a, == o,(i)=k

Thus o, is 1-1 and onto, and therefore a permutation, i.e. o, € S,,.

Now we are in a position to define the sought after homomorphism:
¢ G — Sn

For a € G we declare ¢(a) = 0,. We check this is a homomorphism. Let a,b € G. We must
compare ¢(a)p(b) = o, 0 o, with ¢(ab) = o4. We compute

ooy = (ab)a; = a(ba;) = alg, (i) = G, (0,(i))

for any i € {1,...,n}, which shows that o4 = 0, 0 0,. To show ¢ is 1-1, we compute its
kernel. Suppose ¢(a) = e, i.e. 0,(i) =i for all i e {1,...,n}. This means

aa; = aoa(i) = Q;

which implies a = e. Thus ker(¢) = {e} and therefore ¢ is 1-1. O
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Let us see Cayley’s Theorem in action. To clarify the main point, take G to be an interesting
group which is not defined using permutations. Let us introduce the quaternion group

QS = { 17_1a i7 _i7 j7_j7 ka _k}

of order 8, with the relations that —1 commutes with everything, (—1)?> = 1, and also
i =j2 =k? = —1, and ij = k. These relations generate the Cayley table of Qg as follows:

k| -k k —j § i —i -1 1

Cayley’s Theorem gives us a way to realize (Js as a subgroup of the symmetric group Ss.
The construction is as follows. First we label the elements of QJg as a4, ...,as. For example,
we may use the following labelling (although any labelling will do):

a1:17 G2:—1, a3:i7 a4:_i7 G5:j, aﬁz_ja (Z7=k, a8:_k
Next, given an element a € Qg we define the associated permuation o, € Sg by the relation
aa; = a; — o.(i) =7

Let us spell this out for the element a = i€ ()g. We have

aa; = (i)(1) = aay = (i)(—-1)=—-i=ay

aaz = (1)(i) = o aay = (i)(—i) =1=a4
=([1){) =k= aas = (i)(—j) = ~k = as
= (i)(k) = —j = a aas = (i)(=k) =j = as

These relations then determine the permutation o, = o; as follows:
0.(1) =3, 04.2)=4, 0.(3)=2, 0,4 =1,

0u(5) =T, 0a(6)=8, 0u(7)=6, 0.(8)=5

All together we may write our permutation o, = 0; in cycle notation as

— (1324)(5768) € Sg
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We may proceed to do this for each element a € Q)s. We get the following subgroup of Ss:

{e, (12)(34)(56)(78), (1324)(5768), (1423)(5867),
(1526)(3847), (1625)(3748), (1728)(3546), (1827)(3645)}

The elements are listed in the order corresponding to the above ordering of the elements of
Qs. In summary, (Jg is isomorphic to the subgroup of Sg displayed above.

Cayley’s Theorem is conceptually very important: it says that every finite group, however
abstractly defined, is isomorphic to a subgroup of some symmetric group, a very concrete
type of group that we understand how to work with. On the other hand, Cayley’s Theorem
is often not practical: it realizes our group as a subgroup of a generally very large group.
For example, in the example above, (Jg has order 8 and we realized it as a subgroup of Sy
which is of order 8! = 40320.

The following is a generalization of Cayley’s Theorem.

Let G be a group, H c G a subgroup, and suppose [G : H| = n is finite. Then
there is a homomorphism ¢ : G — S,. Furthermore, ker(¢) is equal to the largest
normal subgroup of G which is contained in H.

To obtain Cayley’s Theorem as a special case, let H = {e}. Then n =[G : {e}] = |G|. The
largest normal subgroup contained in {e} is of course {e}, and so ker(¢) = {e}, i.e. ¢ is 1-1.

The proof of this generalization is similar to that of Cayley’s Theorem. We list the distinct
cosets in G/H as a1H,...,a,H. Then define ¢ : G — S,, by ¢(a) = o, where o, € S, is
determined by the relation: o,(i) = j if and only if aa,H = a;H, where i,j € {1,...,n}. The
details for the rest of the proof are left as an exercise.

Let G be a finite group, H c G a proper subgroup, and suppose |G| does not
divide [G: H]!. Then H contains a non-trivial normal subgroup of G.

This is a corollary of the above theorem. Suppose H does mot contain a non-trivial normal
subgroup. Then the homomorphism ¢ : G — S, from the above theorem, where n = [G : H],
must have ker(¢) = {e}. Thus G = im(¢) is isomorphic to a subgroup of S,,. By Lagrange’s
Theorem, we must have that |G| divides |S,| =n! =[G : H]\
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