First isomorphism theorem, and symmetries of a cube

In this lecture we prove the "1st Isomorphism Theorem" and discuss some consequences. We also explore the rotational symmetries of a cube in 3-dimensional Euclidean space.

- 1st Isomorphism Theorem: Let $\phi: G \rightarrow G^{\prime}$ be an onto homomorphism. Then there is a naturally induced map which we write as

$$
\psi: G / \operatorname{ker}(\phi) \longrightarrow G^{\prime}
$$

and this map ψ is an isomorphism of groups.

Proof. Write $N=\operatorname{ker}(\phi)$. Define the map ψ as follows: for any coset $a N \in G / N$ we let $\psi(a N)=\phi(a)$. Let us check this is well-defined. Suppose $a N=b N$. This means $a b^{-1} \in N$, i.e. $e^{\prime}=\phi\left(a b^{-1}\right)=\phi(a) \phi(b)^{-1}$. Thus $\phi(a)=\phi(b)$. In particular,

$$
\phi(a)=\psi(a N)=\psi(b N)=\phi(b)
$$

This tells us ψ is well-defined map, independent of how the coset $a N$ is written.
Next, we check ψ is a homomorphism. For $a N, b N \in G / N$ we simply compute

$$
\psi(a N) \psi(b N)=\phi(a) \phi(b)=\phi(a b)=\psi(a b N)=\psi(a N b N)
$$

and thus ψ is a homomorphism.
Finally, we check that ψ is 1-1 and onto. Let $a^{\prime} \in G^{\prime}$. Because ϕ is onto, there is some $a \in G$ such that $\phi(a)=a^{\prime}$. Then also $\psi(a N)=\phi(a)=a^{\prime}$. Therefore ψ is onto. Finally, suppose $a N, b N \in G / N$ are such that $\psi(a N)=\psi(b N)$. This implies $\phi(a)=\phi(b)$, or $\phi\left(a b^{-1}\right)=e^{\prime}$, implying $a b^{-1} \in N$. In particular, $a N=b N$. Thus ψ is $1-1$, and ψ is an isomorphism.

Examples

1. Let $\phi: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{5}$ be the homomorphism given by $\phi(k(\bmod 20))=k(\bmod 5)$. Then $\operatorname{ker}(\phi)=\langle 5\rangle \subset \mathbb{Z}_{20}$. The 1st Isomorphism Theorem gives

$$
\mathbb{Z}_{20} /\langle 5\rangle \cong \mathbb{Z}_{5}
$$

2. Consider the exponential map $\phi:(\mathbb{R},+) \rightarrow(U(1), \times)$, where $U(1) \subset \mathbb{C}^{\times}$is the circle group, defined by $\phi(\theta)=e^{2 \pi i \theta}$. This is an onto homomorphism. The kernel is

$$
\operatorname{ker}(\phi)=\left\{\theta \in \mathbb{R}: e^{2 \pi i \theta}=1\right\}=\mathbb{Z} \subset \mathbb{R}
$$

By the 1st isomorphism theorem we conclude we have an isomorphism

$$
\mathbb{R} / \mathbb{Z} \cong U(1)
$$

3. Consider the group of upper triangular matrices in $\mathrm{GL}_{2}(\mathbb{R})$ given by

$$
G=\left\{A=\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{R}, \quad a c \neq 0\right\}
$$

Define a map $\phi: G \rightarrow \mathbb{R}^{\times} \times \mathbb{R}^{\times}$by $\phi(A)=(a, c)$. This is easily checked to be an onto homomorphism. The kernel of ϕ is given by the subgroup $H \subset G$ of upper triangular matrices with $a=c=1$. Thus H is normal. The 1st Isomorphism Theorem gives

$$
G / H \cong \mathbb{R}^{\times} \times \mathbb{R}^{\times}
$$

In particular, G / H is abelian.

Let G be cyclic. If $|G|=\infty$ then $G \cong \mathbb{Z}$. If $|G|$ is finite then $G \cong \mathbb{Z}_{n}$ where $n=|G|$.

Proof. Since G is cyclic, $G=\langle a\rangle=\left\{a^{k}: k \in \mathbb{Z}\right\}$ for some $a \in G$. Define a map

$$
\phi: \mathbb{Z} \longrightarrow G
$$

by setting $\phi(k)=a^{k}$. Then this is onto, since a generates G. The kernel of ϕ consists of $m \in \mathbb{Z}$ such that $a^{m}=e$ in G. There are two cases. If G is finite, then $|G|=n$ is the order of a and $\operatorname{ker}(\phi)=n \mathbb{Z} \subset \mathbb{Z}$. The 1st Isomorphism Theorem gives

$$
\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}=\mathbb{Z} / \operatorname{ker}(\phi) \cong G
$$

In the other case, G is infinite, and there are no m aside from $m=0$ such that $a^{m}=e$, and thus the kernel of ϕ is trivial. Then $G \cong \mathbb{Z}$.

Symmetries of a cube

Now let us turn to the group G which consists of the rotational symmetries of a cube situated in 3-dimensional Euclidean space. This group has 24 elements, as shown on the next page. We first follow a familiar strategy of describing this group: label the vertices 1 to 8 , and associate to each rotation $a \in G$ a corresponding permutation $\phi(a) \in S_{8}$ based on how the vertices are moved around. This gives a homomorphism

$$
\phi: G \longrightarrow S_{8}
$$

This homomorphism ϕ is 1-1, but it is not onto: indeed, $|G|=24$ but the target group S_{8} has $8!=40320$ elements.

Mapping G into S_{8} is not the most ideal scenario. After all, $\left|S_{8}\right|=40320$ whereas G has order only 24. A better way of representing G as a group of permutations is as follows.

There are 4 diagonal axes that pass through the cube; each one goes through two vertices that are as far apart as possible. Label these 4 diagonal axes $1,2,3,4$. Then for a rotation $a \in G$ we define $\psi(a) \in S_{4}$ to be the permutation determined by how the diagonal axes are moved around by the rotation a. This gives a homomomorphism

$$
\psi: G \longrightarrow S_{4}
$$

It is straightforward to verify that ψ is 1-1, i.e. that a rotation of the cube is entirely determined by how these 4 diagonal axes are permuted. Then, since $|G|=24=\left|S_{4}\right|$, we know ψ must also be onto. Therefore ψ is an isomorphism! The construction of the map ψ is illustrated on the next page.

Finally, let us return to the 1st Isomorphism Theorem. To this end, we define a map

$$
\mu: S_{4} \longrightarrow S_{3}
$$

as follows. Let $\sigma \in S_{4}$. Then $a=\psi^{-1}(\sigma) \in G$ is a rotational symmetry of the cube. Consider the six pictures of the cube below, each with a distinguished pair of diagonal axes chosen. These six pictures of the cube are divided into 3 columns labelled $1,2,3$.

You may verify that the rotation a takes the two pictures in column 1 to either the two pictures in column 2, or the two pictures in column 3, and so on. Thus the columns 1,2,3 above are permuted. We obtain a permutation of $\{1,2,3\}$ which we call $\mu(\sigma) \in S_{3}$. Further,

$$
\operatorname{ker}(\mu)=H=\{e,(12)(34),(13)(24),(14)(23)\}
$$

is a normal subgroup, and μ is onto. The 1st Isomorphism Theorem then tells us that

$$
S_{4} / H \cong S_{3}
$$

This example is actually rare: there are no homomorphisms $S_{n} \rightarrow S_{n-1}$ when $n>4$!

Rotational symmetries of a cube

Original position with vertices labelled 1-8

There are 24 symmetries.
By keeping track of where vertices go, we get a 1-1 homomorphism

$$
\left\{\begin{array}{c}
\text { rotational symmetries } \\
\text { of the cube }
\end{array}\right\} \longrightarrow S_{8} \text {. }
$$

identity: corresponds to identity permutation $e \in S_{8}$
For each axis as below, get 3 nontrivial rotations:

$$
\begin{array}{ll}
90^{\circ} & (2358)(1467) \\
180^{\circ} & (25)(38)(16)(47) \\
270^{\circ} & (2853)(1764)
\end{array}
$$

$$
\begin{array}{ll}
90^{\circ} & (1234)(5678) \\
180^{\circ} & (13)(24)(57)(68) \\
270^{\circ} & (1432)(5876)
\end{array}
$$

$90^{\circ}(1287)(5643)$
$180^{\circ}(18)(27)(54)(63)$
$270^{\circ}(1782)(5346)$

2 nontrivial rotations around each of the 4 diagonal axes:

$120^{\circ} \quad(386)(274)$
$240^{\circ}(368)(247)$

$120^{\circ} \quad(183)(475)$
$240^{\circ} \quad(138)(457)$

$120^{\circ} \quad(168)(245)$
$240^{\circ} \quad(186)(254)$

$120^{\circ} \quad(257)(136)$
$240^{\circ}(275)(163)$
180° rotation around each edge-midpoint diagonal:

$(17)(26)(35)(48)$

$(12)(37)(48)(56)$

$(15)(28)(37)(46)$

$(14)(26)(37)(58)$

$(15)(26)(34)(78)$

$(15)(23)(48)(67)$

