MTH 461: Survey of Modern Algebra, Spring 202/ Note 16

First isomorphism theorem, and symmetries of a cube

In this lecture we prove the “lst Isomorphism Theorem” and discuss some consequences.
We also explore the rotational symmetries of a cube in 3-dimensional Euclidean space.

1st Isomorphism Theorem: Let ¢ : G — G’ be an onto homomorphism. Then
there is a naturally induced map which we write as

b1 G/ker(6) — G
and this map ¢ is an isomorphism of groups.
Proof. Write N = ker(¢). Define the map ¢ as follows: for any coset aN € G/N we let

Y(aN) = ¢(a). Let us check this is well-defined. Suppose aN = bN. This means ab=! € N,
ie. ¢ =¢(ab™) = p(a)p(b)~t. Thus ¢(a) = ¢(b). In particular,

¢(a) = P(aN) = (bN) = ¢(b)

This tells us ¢ is well-defined map, independent of how the coset aN is written.

Next, we check 1 is a homomorphism. For aN,bN € G/N we simply compute

P(aN)Y(bN) = ¢(a)p(b) = ¢(ab) = P(abN) = ¢ (aNON)

and thus v is a homomorphism.

Finally, we check that v is 1-1 and onto. Let a’ € G'. Because ¢ is onto, there is some a € G
such that ¢(a) = a’. Then also ¥(aN) = ¢(a) = a’. Therefore ¢ is onto. Finally, suppose
aN,bN € G/N are such that ¢¥(aN) = ¢(bN). This implies ¢(a) = ¢(b), or ¢(ab~t) = ¢,
implying ab=! € N. In particular, aN = bN. Thus 1 is 1-1, and v is an isomorphism. ]

Examples

1. Let ¢ : Zyy — Zs be the homomorphism given by ¢(k (mod 20)) = k£ (mod 5). Then
ker(¢) = (5) < Zs. The 1st Isomorphism Theorem gives

Zgg/<5> = Z5

2. Consider the exponential map ¢ : (R,+) — (U(1), x), where U(1) < C* is the circle
group, defined by ¢(6) = €2, This is an onto homomorphism. The kernel is

ker(¢) ={feR:e* =1} =Zc R
By the 1st isomorphism theorem we conclude we have an isomorphism

R/Z =~ U(1)
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3. Consider the group of upper triangular matrices in GLy(R) given by

G:{A:(S i) a,b,ceR, ac#()}

Define a map ¢ : G — R* x R* by ¢(A) = (a,c). This is easily checked to be an onto
homomorphism. The kernel of ¢ is given by the subgroup H < G of upper triangular
matrices with @ = ¢ = 1. Thus H is normal. The 1st Isomorphism Theorem gives

G/H =~ R* x R

In particular, G/H is abelian.

Let G be cyclic. If |G| = co then G = Z. If |G| is finite then G = Z,, where n = |G|.

Proof. Since G is cyclic, G = {a) = {a* : k € Z} for some a € G. Define a map
0:7— G

by setting ¢(k) = a*. Then this is onto, since a generates G. The kernel of ¢ consists of
m € Z such that a™ = e in G. There are two cases. If G is finite, then |G| = n is the order
of a and ker(¢) = nZ < Z. The 1st Isomorphism Theorem gives

L, = Z/nZ = Z/ker(¢) = G

In the other case, GG is infinite, and there are no m aside from m = 0 such that a™ = e, and
thus the kernel of ¢ is trivial. Then G = Z. O

Symmetries of a cube

Now let us turn to the group G which consists of the rotational symmetries of a cube situated
in 3-dimensional Euclidean space. This group has 24 elements, as shown on the next page.
We first follow a familiar strategy of describing this group: label the vertices 1 to 8, and
associate to each rotation a € G a corresponding permutation ¢(a) € Sy based on how the
vertices are moved around. This gives a homomorphism

¢:G—> S5

This homomorphism ¢ is 1-1, but it is not onto: indeed, |G| = 24 but the target group Sg
has 8! = 40320 elements.
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Mapping G into Sg is not the most ideal scenario. After all, |Ss| = 40320 whereas G has
order only 24. A better way of representing G as a group of permutations is as follows.

There are 4 diagonal axes that pass through the cube; each one goes through two vertices
that are as far apart as possible. Label these 4 diagonal axes 1, 2, 3, 4. Then for a rotation
a € G we define ¢(a) € Sy to be the permutation determined by how the diagonal axes are
moved around by the rotation a. This gives a homomomorphism

V:G— 54

It is straightforward to verify that v is 1-1, i.e. that a rotation of the cube is entirely de-
termined by how these 4 diagonal axes are permuted. Then, since |G| = 24 = |S,|, we know
1 must also be onto. Therefore v is an isomorphism! The construction of the map 1 is
illustrated on the next page.

Finally, let us return to the 1st Isomorphism Theorem. To this end, we define a map
ILL : S4 —_— 53

as follows. Let 0 € S;. Then a =9 ~!(0) € G is a rotational symmetry of the cube. Consider
the six pictures of the cube below, each with a distinguished pair of diagonal axes chosen.
These six pictures of the cube are divided into 3 columns labelled 1,2, 3.

l

You may verify that the rotation a takes the two pictures in column 1 to either the two
pictures in column 2, or the two pictures in column 3, and so on. Thus the columns 1, 2,3
above are permuted. We obtain a permutation of {1,2,3} which we call u(o) € S3. Further,

ker(p) = H = {e, (12)(34), (13)(24), (14)(23)},
is a normal subgroup, and y is onto. The 1st Isomorphism Theorem then tells us that
S4/H = 53

This example is actually rare: there are no homomorphisms S,, — S,,_; when n > 4 !
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