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More isomorphisms, and kernels

In this lecture we continue our study of homomorphisms and isomorphisms and also intro-
duce the important notion of the kernel of an homomorphism.

Recall that an isomorphism is a 1-1 and onto homomorphism ¢ : G — G’. The homomor-
phism property says that ¢(ab) = ¢(a)p(b) for all a,b € G. Define a relation on groups: write
G = (' if there is an isomorphism ¢ : G — G'.

The relation G ~ G’ is an equivalence relation on the collection of all groups.
In proving this we will introduce a number of important properties of isomorphisms.

First, given any group G, consider the map ¢ : G — G given by ¢(a) = a, the “identity”
homomorphism. This is clearly an isomorphism, so G = G, i.e. the relation is reflexive. The
identity homomorphism is sometimes written idg = ¢ : G — G.

Next, suppose G =~ (', i.e. there is an isomorphism ¢ : G — G’. Consider the inverse map
of ¢, denoted ¢’ : G’ — G. This is defined as follows. Let a’ € G’. We would like to desribe
¢'(a’). Because ¢ is onto, there is an @ € G with ¢(a) = o/, and this a is unique as ¢ is
1-1. Then we define ¢/(a’) by ¢'(a’) = a. We see that ¢’ is characterized by the relation
@' (¢(a)) = a for all a € G. You can check that ¢’ is 1-1 and onto, and also ¢(¢'(a’)) = o’ for
all @’ € G’. Next, given o/, € G, let a,b e G such that ¢(a) = da’, ¢(b) =. Then

¢'(d'V') = ¢ (p(a)p(b)) = ¢'(¢(ab)) = ab = ¢'(a’) (V')

Therefore ¢/ : G' — G is an isomorphism, and so G’ = G. The map ¢’ is called the inverse
isomorphism of ¢. The inverse isomorphism is sometimes written ¢—!: G’ — G. This estab-
lishes symmetry of the relation .

In general, if ¢ : G - G' and ¢' : G — G” are homomorphisms, the composition map
¢ o¢p:G— G"is also a homomorphism. Indeed, if a,b € G then we compute

(¢ 0 ¢)(ab) = ¢'(¢(ab)) = ¢'(d(a)d(b)) = ¢'(d(a))d (6(b)) = (¢ © §)(a)(¢' 0 ¢)(D)

If G =G and G’ =~ G” by isomorphisms ¢ : G — G' and ¢’ : G' — G" then ¢’ o ¢ is an iso-
morphism, as you may check. This establishes transitivity. Thus = is an equivalence relation.

We say two groups G and G’ are isomorphic if G = G'. A useful criterion for ¢ : G — G’ to
be an isomorphism is as follows.

Let ¢ : G — G’ be a homomorphism. Then ¢ is an isomorphism if and only if
there exists a homomorphism ¢': G’ — G such that

¢ o =1idg and oo =idg
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Indeed if ¢ is an isomorphism, then the inverse isomorphism considered above provides such
a map ¢'. Conversely, if ¢ is a homomorphism and such a ¢’ in the statement exists, let
us check that ¢ is 1-1 and onto. First, let a’ € G'. Then o’ = (¢ o ¢')(a’) = ¢(¢P'(d’)).
Thus ¢ is onto. Second, suppose a,b € G and ¢(a) = ¢(b). Then applying ¢ we get
a=¢(p(a)) =¢'(¢(b)) =b and thus ¢ is 1-1. We conclude that ¢ is an isomorphism.

In fact in the above statement, ¢’ is always uniquely determined as being the inverse iso-
morphism of ¢ that we considered earlier.

Most of the properties of groups that we are interested in are preserved under isomorphisms.

Let G and G’ be isomorphic groups. Then:
(i) If G is abelian, then G’ is abelian.

(ii) If G is cyclic, then G’ is cyclic.

(iii) If G is finite, then so is G’ and |G| = |G|.

The verification is left as an exercise.

Let ¢ : G — G’ be a homomorphism. We define the kernel of ¢ to be
ker(¢p) ={aeG:¢(a) =€} c G
Let ¢:G — G’ be a homomorphism. Then ker(¢) is a normal subgroup of G.

To see this, first note ¢(e) = €, so e € ker(¢). Next, let a,b € ker(¢). This means ¢(a) = €’
and ¢(b) = ¢’ where €’ € G’ is the identity. Then

6(ab) = 9(a)p(b) = c'e’ ¢

and so ab € ker(¢). Similarly, ¢p(a=1) = ¢(a)~! = (¢/)~! = ¢’ and so a~! € ker(¢). Therefore
ker(¢) is a subgroup of G. Next, let a € ker(¢), and let g € G be any element. Then

d(gag™") = ¢(9)d(a)d(g™!) = dlg)e'dlg) " = ¢
This shows g - ker(¢) - g=! < ker(¢). Therefore ker(¢) is normal.

The following is a sort of converse to the above result:

Let G be a group and N c G a normal subgroup. Then there is a homomor-
phism ¢ from G to some other group such that ker(¢) = N.

In fact we can take the homomorphism ¢ to be one that we have seen before:

¢:G—G/N
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defined by ¢(a) = aN for each a € G. The kernel of this homomorphism is the set of a € G
such that ¢(a) = N, i.e. alN = N. But these are exactly the a that are in the coset N. Thus
ker(¢) = N. This proves what we claimed.

Finally, the following shows that kernels are useful for understanding isomorphisms.

An onto homomorphism ¢ : G — G’ is an isomorphism if and only if ker(¢) = {e}.

First, suppose ¢ is an isomorphism. If a € ker(¢) then ¢(a) = €. But ¢(e) = ¢’ also, so
¢(e) = ¢(a) implies e = a, as ¢ is 1-1. This shows ker(¢) = {e}.

Conversely, suppose ker(¢) = {e}. We aim to show ¢ is 1-1. Suppose ¢(a) = ¢(b). Then

¢’ = ¢(a)p(b) " = p(a)p(b™") = ¢(ab™")

and in particular ab=! € ker(¢). Since ker(¢) = {e} we must have ab=! = e, or equivalently
a =0b. Thus ¢ is 1-1. By assumption ¢ is onto, and thus it is an isomorphism.
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