Complex numbers

The use of complex numbers historically emerged as a way of dealing with the problem that some simple polynomial equations, such as

$$
x^{2}+1=0,
$$

have no solutions in the real numbers. It then became apparent over time that complex numbers are much more than just an invention of this necessity.

Formally, a complex number is a pair $(a, b) \in \mathbb{R} \times \mathbb{R}$, which we often write as $a+i b$:

$$
\mathbb{C}=\{a+i b: \quad a, b \in \mathbb{R}\}
$$

The symbol i satisfies $i^{2}=-1$, and we write $i=\sqrt{-1}$. The operations + and \times on \mathbb{C} are:

$$
\begin{gathered}
(a+b i)+(c+d i)=(a+c)+(b+d) i \\
(a+b i) \times(c+d i)=(a c-b d)+(a d+b c) i
\end{gathered}
$$

As usual we often omit the symbol \times. These operations satisfy the usual distributive law. Following earlier notation we write \mathbb{C}^{\times}for the non-zero complex numbers.

- $(\mathbb{C},+)$ and $\left(\mathbb{C}^{\times}, \times\right)$are abelian groups.

The claim for $(\mathbb{C},+)$ is straightforward. For $\left(\mathbb{C}^{\times}, \times\right)$, associativity, identity $(e=1)$, and commutativity are clear. To show inverses exist, consider $z=a+b i \in \mathbb{C}^{\times}$. We write

$$
z^{-1}=\frac{1}{z}=\frac{1}{a+b i}=\frac{1}{a+b i} \cdot \frac{a-b i}{a-b i}=\frac{a-b i}{a^{2}+b^{2}}=\left(\frac{a}{a^{2}+b^{2}}\right)+\left(-\frac{b}{a^{2}+b^{2}}\right) i
$$

This is an element of \mathbb{C}^{\times}, and is an inverse to z. A priori " $1 / z$ " (and the symbols in red) does not make sense, because we only defined multiplication above: but the expression on the right of the equation can be taken as definition for $1 / z$ and justifies the notation.

- The order of $i \in \mathbb{C}^{\times}$is equal to 4 .

This is immediate from the computations $i^{2}=-1, i^{3}=i^{2} \cdot i=-i, i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1$.
One of the most important functions of complex numbers is the exponential function. This can be defined in several ways. One way is to use power series:

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots
$$

If we plug $z=i \theta$ into this formula, where θ is a real number, we get:

$$
\begin{aligned}
e^{i \theta} & =1+(i \theta)+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\cdots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)=\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

The remarkable formula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ is usually called Euler's Formula.
The norm of $z=a+b i \in \mathbb{C}$ is the non-negative real number defined by $|z|=\sqrt{a^{2}+b^{2}}$. The conjugate of $z=a+b i$ is the complex number defined by $\bar{z}=a-b i$. We have

$$
|z|^{2}=a^{2}+b^{2}=z \bar{z},
$$

which gives the expression $1 / z=\bar{z} /|z|^{2}$, and expands to our previous expression for $1 / z$. Note that $\left|e^{i \theta}\right|=\sqrt{\cos (\theta)^{2}+\sin (\theta)^{2}}=1$. A general property is that $\left|z z^{\prime}\right|=|z|\left|z^{\prime}\right|$ for $z, z^{\prime} \in \mathbb{C}$.

Every complex number z can be written in polar form $z=r e^{i \theta}$ where r is a non-negative real number, and θ is some real number. Note $|z|=\left|r e^{i \theta}\right|=|r|\left|e^{i \theta}\right|=r$. The number $r=|z|$ is sometimes also called the amplitude, and θ the phase of z.

The complex plane is the usual $x y$-plane, where the point (x, y) represents the complex number $z=x+y i$. Above we show how in polar form, $z=r e^{i \theta}$ is determined by locating the position of $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ on the unit circle (it forms angle θ with the x-axis) and then scales according to its amplitude r.

The exponential law $e^{z+z^{\prime}}=e^{z} e^{z^{\prime}}$ holds for complex numbers $z, z^{\prime} \in \mathbb{C}$. This can be proved in any number of ways. When $z=i \theta$ and $z^{\prime}=i \theta^{\prime}$ for real numbers θ, θ^{\prime} this law is equivalent to the trigonometric identities for angle addition:

$$
\begin{aligned}
e^{i \theta} e^{i \theta^{\prime}} & =(\cos (\theta)+i \sin (\theta))\left(\cos \left(\theta^{\prime}\right)+i \sin \left(\theta^{\prime}\right)\right) \\
& =\left(\cos (\theta) \cos \left(\theta^{\prime}\right)-\sin (\theta) \sin \left(\theta^{\prime}\right)\right)+i\left(\cos (\theta) \sin \left(\theta^{\prime}\right)+\sin (\theta) \cos \left(\theta^{\prime}\right)\right) \\
& =\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right) \\
& =e^{i\left(\theta+\theta^{\prime}\right)}
\end{aligned}
$$

The exponential law can be phrased in terms of group theory as follows:

- Exponentiation gives an onto homomorphism $(\mathbb{C},+) \rightarrow\left(\mathbb{C}^{\times}, \times\right)$.

The geometric way of multiplying $z=r e^{i \theta}$ and $z^{\prime}=r^{\prime} e^{i \theta^{\prime}}$ now emerges: you multiply $e^{i \theta}$ and $e^{i \theta^{\prime}}$ to get $e^{i \theta+i \theta^{\prime}}$ (so the phases add) and then scale this by $r r^{\prime}$, the new amplitude.

We now give a group-theoretic interpretation of polar decomposition multiplication.
Let $U(1)=\{z \in \mathbb{C}:|z|=1\}=\left\{e^{i \theta}: \theta \in \mathbb{R}\right\}$. Then with the operation of multiplication, this is a subgroup of $\left(\mathbb{C}^{\times}, \times\right)$, and is in particular an abelian group.

This is straightforward to prove. The group $U(1)$ is called the circle group. Geometrically, it is the group of rotational symmetries of the complex plane which fix the origin. It is one of the most important and fundamental examples of a group. We have:

- Exponentiation gives an onto homomorphism $(\mathbb{R},+) \rightarrow(U(1), \times)$.

For the next statement we let $\mathbb{R}_{>0}^{\times}$be the subgroup of $\left(\mathbb{R}^{\times}, \times\right)$containing the positive reals.

- The $\operatorname{map} \phi: \mathbb{R}_{>0}^{\times} \times U(1) \rightarrow \mathbb{C}^{\times}$given by $\phi\left(r, e^{i \theta}\right)=r e^{i \theta}$ is an isomorphism of groups.

In other words, polar decomposition of complex numbers helps us understand how the group \mathbb{C}^{\times}is really a product of two simpler groups we already understand.

To prove the statement, first we see that ϕ is $1-1$ and onto: it is $1-1$ because if $r e^{i \theta}=r^{\prime} e^{i \theta^{\prime}}$ then $r=r^{\prime}$ and $e^{i \theta}=e^{i \theta^{\prime}}$ (here it is important that $r, r^{\prime} \neq 0$). It is onto because every non-zero complex number has a polar representation. Finally, ϕ is a homomorphism because

$$
\phi\left(r, e^{i \theta}\right) \phi\left(r^{\prime}, e^{i \theta^{\prime}}\right)=\left(r e^{i \theta}\right)\left(r^{\prime} e^{i \theta^{\prime}}\right)=r r^{\prime} e^{i \theta} e^{i \theta^{\prime}}=\phi\left(r r^{\prime}, e^{i \theta} e^{i \theta^{\prime}}\right)=\phi\left(\left(r, e^{i \theta}\right)\left(r^{\prime}, e^{i \theta^{\prime}}\right)\right)
$$

It follows that ϕ is an isomorphism as claimed.

