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Homomorphisms and Isomorphisms

When are two groups “the same”? We have implicitly answered this question in our earlier
investigations. Namely, we have seen several different incarnations of a certain non-abelian
group of order 6. First, we abstractly defined a group

G “ te, r, b, g, y, ou

in Lecture 1, by writing out its Cayley table. We saw later that the group formed by the
symmetries of an equilateral triangle, and also the symmetric group

S3 “ te, p12q, p23q, p31q, p123q, p132qu

have the same Cayley table when the elements are matched up appropriately. The Cayley
tables of G and S3 are shown below, and we see that they are essentially the same.

e r b g y o

e e r b g y o

r r e o y g b

b b y e o r g

g g o y e b r

y y b g r o e

o o g r b e y

e p12q p23q p31q p132q p123q

e e p12q p23q p31q p132q p123q

p12q p12q e p123q p132q p31q p23q

p23q p23q p132q e p123q p12q p31q

p31q p31q p123q p132q e p23q p12q

p132q p132q p23q p31q p12q p123q e

p123q p123q p31q p12q p23q e p132q

Let us formalize what we mean by the same. What we really have is a map ϕ ∶ G Ñ S3, that
is, an assignment to each element of G some element of S3. This assignment is a 1-1 and
onto map, which means that every element of S3 is mapped to by something in G, and that
no two elements of G are mapped to the same element of S3. In our example this map is:

ϕpeq “ e, ϕprq “ p12q, ϕpbq “ p23q, ϕpgq “ p31q, ϕpyq “ p132q, ϕpoq “ p132q

Furthermore, this map preserves the group structures, or equivalently, it maps the Cayley
table of G in the correct way to the Cayley table of S3. What this really means is that for
any a1, a2 P G the product a1a2 P G is mapped to the product ϕpa1qϕpa2q P S3. For example,

p123q “ ϕpoq “ ϕprbq “ ϕprqϕpbq “ p12qp23q “ p123q

We formalize the kind of map that is appearing here into a definition.

§ A homomorphism from a group G to a group G1 is a map ϕ ∶ G Ñ G1 such that

ϕpabq “ ϕpaqϕpbq for all a, b P G.

A homomorphism ϕ is an isomorphism if the map ϕ is 1-1 and onto.

Therefore, two groups are the “same” if there is an isomorphism ϕ ∶ G Ñ G1.

The only difference between a homomorphism and an isomorphism is that the map ϕ does
not need to be 1-1 and onto for a homomorphism. Every isomorphism is of course a homo-
morphism, and so for the moment we will develop some properties of this more general notion.
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Examples

1. Let G be any group, and teu the trivial group. Then there is a homomorphism ϕ ∶ G Ñ teu

defined by ϕpaq “ e for all a P G. Then for any a, b P G we have ϕpabq “ e “ ee “ ϕpaqϕpbq,
and so ϕ is a homomorphism.

2. Consider the groups GL2pRq and pRˆ,ˆq. Define a map ϕ ∶ GL2pRq Ñ Rˆ by setting
ϕpAq “ detpAq for each matrix A P GL2pRq. Then

ϕpAqϕpBq “ detpAqdetpBq “ detpABq “ ϕpABq

Thus ϕ is a homomorphism.

3. Define a map ϕ ∶ pR,`q Ñ pRˆ,ˆq by ϕpxq “ 2x for each x P R. Then

ϕpx ` yq “ 2x`y “ 2x2y “ ϕpxqϕpyq

for all x, y P R. Therefore ϕ is a homomorphism of groups.

4. Let G be a subgroup and H Ă G a subgroup. Define ϕ ∶H Ñ G by ϕpaq “ a for all a P H.
In other words, ϕ is the “inclusion map” which simply sends H to itself viewed as a subset of
G. Clearly ϕ is a homomorphism. For example, we have a homomorphism pZ,`q Ñ pQ,`q,
and a homomorphism pQˆ,ˆq Ñ pRˆ,ˆq.

5. Consider the symmetric group Sn, and the additive group Z2. Define ϕ ∶ Sn Ñ Z2 by:

ϕpσq “

#

0 pmod 2q if σ is even

1 pmod 2q if σ is odd

Then ϕ is a homomorphism, thanks to our understanding of how even and odd permutations
compose. For example, if σ is even and σ1 is odd, we know σσ1 is odd, and thus

ϕpσσ1q “ 1 “ 0 ` 1 “ ϕpσq ` σpσ1q

The following gives another source of many group homomorphisms, and is related to our
construction of quotient groups from last lecture.

§ Let G be a group and N Ă G a normal subgroup. Define ϕ ∶ G Ñ G{N by
ϕpaq “ aN for all a P G. Then ϕ is a group homomorphism which is onto.

To see this, we simply compute ϕpaqϕpbq “ paNqpbNq “ abN “ ϕpabq. This shows that ϕ is a
homomorphism. The homomorphism ϕ is onto because given a coset aN P G{N the element
a P G satisfies ϕpaq “ aN .
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As an example, we have onto homomorphisms Z Ñ Zn for every positive integer n, defined
by sending an integer k to its congruence class k pmod nq.

§ Let ϕ ∶ G Ñ G1 be a homomorphism of groups. Then ϕ maps the identity e P G
to the identity e1 P G1. Further, for all a P G we have ϕpa´1q “ ϕpaq´1.

To prove the first part, we compute

ϕpeq “ ϕpeeq “ ϕpeqϕpeq

Multiply both sides by ϕpeq´1 to obtain e1 “ ϕpeq. Next, for a P G we compute

ϕpaqϕpa´1q “ ϕpaa´1q “ ϕpeq “ e1

and similarly ϕpa´1qϕpaq “ e1. Thus the inverse of ϕpaq P G1 is given by ϕpa´1q.
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