## Homomorphisms and Isomorphisms

When are two groups "the same"? We have implicitly answered this question in our earlier investigations. Namely, we have seen several different incarnations of a certain non-abelian group of order 6 . First, we abstractly defined a group

$$
G=\{e, r, b, g, y, o\}
$$

in Lecture 1, by writing out its Cayley table. We saw later that the group formed by the symmetries of an equilateral triangle, and also the symmetric group

$$
S_{3}=\{e,(12),(23),(31),(123),(132)\}
$$

have the same Cayley table when the elements are matched up appropriately. The Cayley tables of $G$ and $S_{3}$ are shown below, and we see that they are essentially the same.

|  | $e$ | $r$ | $b$ | $g$ | $y$ | $o$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $r$ | $b$ | $g$ | $y$ | $o$ |
| $r$ | $r$ | $e$ | $o$ | $y$ | $g$ | $b$ |
| $b$ | $b$ | $y$ | $e$ | $o$ | $r$ | $g$ |
| $g$ | $g$ | $o$ | $y$ | $e$ | $b$ | $r$ |
| $y$ | $y$ | $b$ | $g$ | $r$ | $o$ | $e$ |
| $o$ | $o$ | $g$ | $r$ | $b$ | $e$ | $y$ |


|  | $e$ | $(12)$ | $(23)$ | $(31)$ | $(132)$ | $(123)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $(12)$ | $(23)$ | $(31)$ | $(132)$ | $(123)$ |
| $(12)$ | $(12)$ | $e$ | $(123)$ | $(132)$ | $(31)$ | $(23)$ |
| $(23)$ | $(23)$ | $(132)$ | $e$ | $(123)$ | $(12)$ | $(31)$ |
| $(31)$ | $(31)$ | $(123)$ | $(132)$ | $e$ | $(23)$ | $(12)$ |
| $(132)$ | $(132)$ | $(23)$ | $(31)$ | $(12)$ | $(123)$ | $e$ |
| $(123)$ | $(123)$ | $(31)$ | $(12)$ | $(23)$ | $e$ | $(132)$ |

Let us formalize what we mean by the same. What we really have is a map $\phi: G \rightarrow S_{3}$, that is, an assignment to each element of $G$ some element of $S_{3}$. This assignment is a 1-1 and onto map, which means that every element of $S_{3}$ is mapped to by something in $G$, and that no two elements of $G$ are mapped to the same element of $S_{3}$. In our example this map is:

$$
\phi(e)=e, \quad \phi(r)=(12), \quad \phi(b)=(23), \quad \phi(g)=(31), \quad \phi(y)=(132), \quad \phi(o)=(132)
$$

Furthermore, this map preserves the group structures, or equivalently, it maps the Cayley table of $G$ in the correct way to the Cayley table of $S_{3}$. What this really means is that for any $a_{1}, a_{2} \in G$ the product $a_{1} a_{2} \in G$ is mapped to the product $\phi\left(a_{1}\right) \phi\left(a_{2}\right) \in S_{3}$. For example,

$$
(123)=\phi(o)=\phi(r b)=\phi(r) \phi(b)=(12)(23)=(123)
$$

We formalize the kind of map that is appearing here into a definition.

- A homomorphism from a group $G$ to a group $G^{\prime}$ is a map $\phi: G \rightarrow G^{\prime}$ such that

$$
\phi(a b)=\phi(a) \phi(b) \quad \text { for all } a, b \in G
$$

## A homomorphism $\phi$ is an isomorphism if the $\operatorname{map} \phi$ is $\mathbf{1 - 1}$ and onto.

Therefore, two groups are the "same" if there is an isomorphism $\phi: G \rightarrow G^{\prime}$.
The only difference between a homomorphism and an isomorphism is that the map $\phi$ does not need to be 1-1 and onto for a homomorphism. Every isomorphism is of course a homomorphism, and so for the moment we will develop some properties of this more general notion.

## Examples

1. Let $G$ be any group, and $\{e\}$ the trivial group. Then there is a homomorphism $\phi: G \rightarrow\{e\}$ defined by $\phi(a)=e$ for all $a \in G$. Then for any $a, b \in G$ we have $\phi(a b)=e=e e=\phi(a) \phi(b)$, and so $\phi$ is a homomorphism.
2. Consider the groups $\mathrm{GL}_{2}(\mathbb{R})$ and $\left(\mathbb{R}^{\times}, \times\right)$. Define a map $\phi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$by setting $\phi(A)=\operatorname{det}(A)$ for each matrix $A \in \mathrm{GL}_{2}(\mathbb{R})$. Then

$$
\phi(A) \phi(B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)=\phi(A B)
$$

Thus $\phi$ is a homomorphism.
3. Define a map $\phi:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{\times}, \times\right)$by $\phi(x)=2^{x}$ for each $x \in \mathbb{R}$. Then

$$
\phi(x+y)=2^{x+y}=2^{x} 2^{y}=\phi(x) \phi(y)
$$

for all $x, y \in \mathbb{R}$. Therefore $\phi$ is a homomorphism of groups.
4. Let $G$ be a subgroup and $H \subset G$ a subgroup. Define $\phi: H \rightarrow G$ by $\phi(a)=a$ for all $a \in H$. In other words, $\phi$ is the "inclusion map" which simply sends $H$ to itself viewed as a subset of $G$. Clearly $\phi$ is a homomorphism. For example, we have a homomorphism $(\mathbb{Z},+) \rightarrow(\mathbb{Q},+)$, and a homomorphism $\left(\mathbb{Q}^{\times}, \times\right) \rightarrow\left(\mathbb{R}^{\times}, \times\right)$.
5. Consider the symmetric group $S_{n}$, and the additive group $\mathbb{Z}_{2}$. Define $\phi: S_{n} \rightarrow \mathbb{Z}_{2}$ by:

$$
\phi(\sigma)=\left\{\begin{array}{lll}
0 & (\bmod 2) & \text { if } \sigma \text { is even } \\
1 & (\bmod 2) & \text { if } \sigma \text { is odd }
\end{array}\right.
$$

Then $\phi$ is a homomorphism, thanks to our understanding of how even and odd permutations compose. For example, if $\sigma$ is even and $\sigma^{\prime}$ is odd, we know $\sigma \sigma^{\prime}$ is odd, and thus

$$
\phi\left(\sigma \sigma^{\prime}\right)=1=0+1=\phi(\sigma)+\sigma\left(\sigma^{\prime}\right)
$$

The following gives another source of many group homomorphisms, and is related to our construction of quotient groups from last lecture.

Let $G$ be a group and $N \subset G$ a normal subgroup. Define $\phi: G \rightarrow G / N$ by $\phi(a)=a N$ for all $a \in G$. Then $\phi$ is a group homomorphism which is onto.

To see this, we simply compute $\phi(a) \phi(b)=(a N)(b N)=a b N=\phi(a b)$. This shows that $\phi$ is a homomorphism. The homomorphism $\phi$ is onto because given a coset $a N \in G / N$ the element $a \in G$ satisfies $\phi(a)=a N$.

As an example, we have onto homomorphisms $\mathbb{Z} \rightarrow \mathbb{Z}_{n}$ for every positive integer $n$, defined by sending an integer $k$ to its congruence class $k(\bmod n)$.

- Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism of groups. Then $\phi$ maps the identity $e \in G$ to the identity $e^{\prime} \in G^{\prime}$. Further, for all $a \in G$ we have $\phi\left(a^{-1}\right)=\phi(a)^{-1}$.

To prove the first part, we compute

$$
\phi(e)=\phi(e e)=\phi(e) \phi(e)
$$

Multiply both sides by $\phi(e)^{-1}$ to obtain $e^{\prime}=\phi(e)$. Next, for $a \in G$ we compute

$$
\phi(a) \phi\left(a^{-1}\right)=\phi\left(a a^{-1}\right)=\phi(e)=e^{\prime}
$$

and similarly $\phi\left(a^{-1}\right) \phi(a)=e^{\prime}$. Thus the inverse of $\phi(a) \in G^{\prime}$ is given by $\phi\left(a^{-1}\right)$.

