Consequences of Lagrange's Theorem

Last lecture we discussed Lagrange's Theorem: for any finite group G, and subgroup $H \subset G$, we have $[G: H]=|G| /|H|$. Recall here that $[G: H]$ is the number of right cosets of H in G. The most useful consequence of this theorem is the following:

- If G is a finite group, and H is a subgroup of G, then $|H|$ divides $|G|$.

This of course greatly constrains the possibilities for which subsets of G can be subgroups. A particular case is the following. Let $a \in G$ and consider the cyclic subgroup $\langle a\rangle \subset G$ generated by a. Recall that $\operatorname{ord}(a)$ is equal to the size of this subgroup. We obtain:

- If G is a finite group and $a \in G$ then $\operatorname{ord}(a)$ divides $|G|$.

For example, S_{3} can only have elements of orders $\{1,2,3,6\}$, and 6 does not occur because S_{3} is not cyclic. In fact, we know all of this from direct computation. But now we understand more about why the orders of elements are constrained to these numbers.

- If G is a finite group and $a \in G$ then $a^{|G|}=e$.

Indeed, writing $|G|=\operatorname{ord}(a) \cdot n$, we have $a^{|G|}=a^{\operatorname{ord}(a) \cdot n}=\left(a^{\operatorname{ord}(a)}\right)^{n}=e^{n}=e$, as claimed.
Next, we apply this last result to the group $\left(\mathbb{Z}_{n}^{\times}, \times\right)$where n is a positive integer. Define

$$
\phi(n)=\left|\mathbb{Z}_{n}^{\times}\right|=\#\{k \in \mathbb{Z}: 1 \leqslant k \leqslant n, \operatorname{gcd}(k, n)=1\}
$$

The function $\phi(n)$ is called Euler's ϕ-function, and sometimes Euler's totient function. For example, $\mathbb{Z}_{7}^{\times}=\{1,2,3,4,5,6\}$ so $\phi(7)=6$, while $\mathbb{Z}_{10}^{\times}=\{1,3,7,9\}$ and so $\phi(10)=4$. Below we show a graph of Euler's ϕ-function.

- (Euler's Theorem) For any integer k relatively prime to n, we have

$$
k^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

This result follows from the previous one: just view $k(\bmod n)$ as an element of \mathbb{Z}_{n}^{\times}, and note that the order of the group is by definition $\phi(n)$.

For example, let $n=30$. We list the integers from 1 to 30 which are relatively prime to 30 :

$$
\mathbb{Z}_{30}^{\times}=\{1,7,11,13,17,19,23,29\}
$$

Thus $\phi(30)=\left|\mathbb{Z}_{30}^{\times}\right|=8$. Furthermore, Euler's Theorem tells us that for any one of the above 8 integers k (and their congruence classes mod 30$)$ we have $k^{8} \equiv 1(\bmod 30)$.

A special case of Euler's Theorem is when n is a prime number p. For in this case we have

$$
\mathbb{Z}_{p}^{\times}=\{1,2, \cdots, p-1\}
$$

so in particular $\phi(p)=p-1$. Therefore we obtain:

- (Fermat's Little Theorem) For a prime p and integer k relatively prime to p :

$$
k^{p-1} \equiv 1 \quad(\bmod p)
$$

The conclusion of this result is often written as $k^{p} \equiv k(\bmod p)$.
For example, 97 is a prime number. Let's compute $5^{99}(\bmod 97)$. Fermat's Little Theorem tells us that $5^{96} \equiv 1(\bmod 97)$. Using this we compute:

$$
5^{99} \equiv 5^{96+3} \equiv 5^{96} 5^{3} \equiv 1 \cdot 5^{3} \equiv 125 \equiv 28 \quad(\bmod 97)
$$

Without the help of Fermat's Little Theorem, this would have taken much longer!
Another important consequence of Lagrange's Theorem is the following.

- Suppose G is a finite group of prime order. Then G is cyclic.

Let $H \subset G$ be a subgroup of G. Then Lagrange's Theorem tells us that $|H|$ divides $|G|$. Since $|G|$ is prime, $|H|$ must be 1 or $|G|$. In the first case, we must have $H=\{e\}$, and in the latter case, $H=G$. In particular, G has no non-trivial proper subgroups. Let $a \in G$ be a non-identity element. Then $\langle a\rangle$ is a non-trivial subgroup and thus must be all of G. In particular, $G=\langle a\rangle$ and so G is cyclic and generated by a.

We make two important remarks about Lagrange's Theorem. First, we could have used the notion of a left coset instead of a right coset: these are subsets $a H=\{a h: h \in H\}$. Lagrange's Theorem holds for left cosets, by the same arguments. A consequence is that the number of left cosets is equal to $[G: H$], the number of right cosets.

Second, the converse to Lagrange's Theorem is false: if a positive integer d divides $|G|$, then it is not necessarily true that there is a subgroup of order d within G. The first instance of this phenomenon is the following:

- In the alternating group A_{4} of order 12 , there is no subgroup of order 6 .

Let us prove this. First we write out the 12 elements of A_{4} :

$$
A_{4}=\{e,(123),(132),(124),(142),(134),(143),(234),(243),(12)(34),(13)(24),(14)(23)\}
$$

Note we have 8 cycles of length 3 , which have order 3 , and 3 elements which are pairs of disjoint transpositions, each of order 2. Now suppose there is a subgroup $H \subset A_{4}$ of order 6. Let $\sigma \in A_{4}$ be a cycle of length 3. Consider the right cosets

$$
H, \quad H \sigma, \quad H \sigma^{2}
$$

Lagrange's Theorem tells us that $\left[A_{4}: H\right]=\left|A_{4}\right| /|H|=12 / 6=2$, so there are exactly 2 right cosets. So two of the cosets above must be equal. If $H=H \sigma$, then $\sigma \in H$, and similarly if $H=H \sigma^{2}$ then $\sigma^{2} \in H$. But since $\sigma^{2}=\sigma^{-1}$ and H is a subgroup, we must have $\sigma \in H$. The other possibility is that $H \sigma=H \sigma^{2}$. Multiplying on the right by σ gives $H \sigma^{2}=H$, and again we conclude $\sigma \in H$. In conclusion, every length 3 cycle in A_{4} must be in H. But there are 8 such cycles. Thus $6=|H| \geqslant 8$, which is a contradiction. Thus A_{4} cannot have a subgroup of order 6 , as we claimed.

