Cosets and Lagrange's Theorem

In this lecture we introduce the notion of a coset and prove the famous result of Lagrange regarding the divisibility of the order of a group by the orders of its subgroups.

Fix a group G and a subgroup $H \subset G$. Define a relation \sim on the set G such that for $a, b \in G$:

$$
a \sim b \quad \Longleftrightarrow \quad a b^{-1} \in H
$$

Keep in mind that \sim depends on H. We show that this is an equivalence relation.

1. (Reflexivity) $a \sim a$ because $a a^{-1}=e$ and the identity is in any subgroup.
2. (Symmetry) $a \sim b$ implies $a b^{-1} \in H$. Since H is a subgroup, the inverse of this element is also in H : we have $\left(a b^{-1}\right)^{-1}=b a^{-1} \in H$. Thus $b \sim a$.
3. (Transitivity) $a \sim b$ and $b \sim c$ imply $a b^{-1} \in H$ and $b c^{-1} \in H$. Since H is a subgroup, it is closed under the group operation. Thus $\left(a b^{-1}\right)\left(b c^{-1}\right)=a c^{-1} \in H$, and $a \sim c$.

We have seen this construction before in a special case. Let $G=(\mathbb{Z},+)$ and for a fixed positive integer n take the subgroup $H=n \mathbb{Z}=\{n k: k \in \mathbb{Z}\} \subset \mathbb{Z}$. Then $a \sim b$ if and only if " $a b^{-1}$ " $=a-b \in n \mathbb{Z}$, i.e. $a \equiv b(\bmod n)$. This motivates the following general notation:

$$
a \sim b \quad \Longleftrightarrow \quad a \equiv b \quad(\bmod H)
$$

- For $a \in G$, let $H a=\{h a: h \in H\}$. Then $H a$ is called a right coset of H in G.

The right cosets of H in G are the equivalence classes of the above relation:

$$
H a=\{b \in G: a \equiv b \quad(\bmod H)\}
$$

To see this, consider some $b \in H a$. Then $b=h a$ where $h \in H$. From this we then find $a b^{-1}=h^{-1} \in H$ and so $a \equiv b(\bmod H)$. Thus $H a$ is a subset of the equivalence class of a. Conversely consider any $b \in G$ such that $a \equiv b(\bmod H)$. Then $a b^{-1} \in H$, so $a b^{-1}=h$ for some $h \in H$, and so $b=h^{-1} a \in H a$.

- There is a 1-1 correspondence between any two right cosets of H in G.

Let $H a$ be a right coset. It suffices to show that $H a$ is in 1-1 correspondence with H itself. For this, we note that each $h \in H$ determines the element $h a \in H a$, and every element in $H a$ is of this form. Thus the only thing to check is that if $h a=h^{\prime} a$ then $h=h^{\prime}$, and this just follows from multiplying by a^{-1} on the right.

We define the index of a subgroup H in G, written $[G: H]$, as follows:

$$
[G: H]=\#\{\text { distinct right cosets of } H \text { in } G\}
$$

Of course it is possible that $[G: H]$ is infinite.

- (Lagrange's Theorem) If G is a finite group, and H is a subgroup of G, then

$$
[G: H]=|G| /|H|
$$

In particular, if G is finite, the order of any subgroup H divides the order of the group G. The proof follows from our discussion above: the right cosets in G are equivalence classes, and partition the set G into $[G: H]$ distinct subsets, each of which has size $|H|$. From this it follows that $|G|=[G: H] \cdot|H|$.

Let's see all of this in action. Take the symmetric group S_{3} of orer 6 :

$$
S_{3}=\{e,(12),(23),(31),(123),(132)\}
$$

Let H be the order 2 cyclic subgroup $\{e,(12)\}$. Then the right cosets are

$$
H e=\{e,(12)\}, \quad H(23)=\{(23),(123)\}, \quad H(31)=\{(31),(132)\}
$$

Any other right coset is one of the above 3: we have $H(12)=H e=H, H(123)=H(23)$ and $H(132)=H(31)$. The number of distinct right cosets is $\left[S_{3}: H\right]=3$. We directly observe Lagrange's Theorem: $6 / 2=\left|S_{3}\right| /|H|=\left[S_{3}: H\right]=3$.

For another example, consider the symmetric group S_{4}. This has order $\left|S_{4}\right|=4!=24$. We saw last lecture that the alternating group $A_{4} \subset S_{4}$ has order 12. Thus

$$
\left[S_{4}: A_{4}\right]=\left|S_{4}\right| /\left|A_{4}\right|=24 / 12=2
$$

In particular, there are exactly two right cosets: $A_{4}=A_{4} e$ and $A_{4} \sigma$ where σ is any odd permutation, say, a transposition.

Assume $n \geqslant 2$. For the symmetric group S_{n}, and the subgroup $A_{n} \subset S_{n}$, there are exactly two right cosets. To see this, we note that $a \equiv b\left(\bmod A_{n}\right)$ if and only if $a b^{-1}$ is even. Thus the two equivalence classes, i.e. right cosets, are the sets of even and odd permutations. (Assuming $n \geqslant 2$ ensures that these two cosets are both nonempty.) We conclude

$$
\left|A_{n}\right|=\left|S_{n}\right| /\left[S_{n}: A_{n}\right]=n!/ 2 .
$$

Thus the alternating group A_{n} has order $n!/ 2$.

