Alternating groups

In this lecture we continue studying even and odd permutations. We introduce and study the alternating groups A_{n} which consist of even permutations. We then consider the rotational symmetries of the tetrahedron, which are closely related the group A_{4}.

Recall that a permutation $\sigma \in S_{n}$ is even if $\sigma\left(\Delta_{n}\right)=\Delta_{n}$ and odd if $\sigma\left(\Delta_{n}\right)=-\Delta_{n}$. Here Δ_{n} is the polynomial $\prod_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)$ introduced last lecture. Define

$$
A_{n}=\left\{\sigma \in S_{n}: \sigma \text { is even }\right\} \subset S_{n}
$$

- The subset $A_{n} \subset S_{n}$ is a subgroup, called the $n^{\text {th }}$ alternating group.

To prove this we first record a useful relation. Given any permutations $\sigma, \sigma^{\prime} \in S_{n}$ we have

$$
\left(\sigma \sigma^{\prime}\right)\left(\Delta_{n}\right)=\sigma\left(\sigma^{\prime}\left(\Delta_{n}\right)\right)
$$

This just follows by writing out what each side means explicitly:

$$
\begin{aligned}
\left(\sigma \sigma^{\prime}\right)\left(\Delta_{n}\right) & =\prod_{1 \leqslant i<j \leqslant n}\left(x_{\left(\sigma \sigma^{\prime}\right)(i)}-x_{\left(\sigma \sigma^{\prime}\right)(j)}\right)=\prod_{1 \leqslant i<j \leqslant n}\left(x_{\sigma\left(\sigma^{\prime}(i)\right)}-x_{\sigma\left(\sigma^{\prime}(j)\right)}\right) \\
& =\sigma\left(\prod_{1 \leqslant i<j \leqslant n}\left(x_{\sigma^{\prime}(i)}-x_{\sigma^{\prime}(j)}\right)\right)=\sigma\left(\sigma^{\prime}\left(\Delta_{n}\right)\right)
\end{aligned}
$$

Similarly, $\sigma\left(-\Delta_{n}\right)=-\sigma\left(\Delta_{n}\right)$. Now suppose $\sigma\left(\Delta_{n}\right)=(-1)^{k} \Delta_{n}$ and $\sigma^{\prime}\left(\Delta_{n}\right)=(-1)^{l} \Delta_{n}$. Then

$$
\begin{aligned}
\left(\sigma \sigma^{\prime}\right)\left(\Delta_{n}\right) & =\sigma\left(\sigma^{\prime}\left(\Delta_{n}\right)\right)=\sigma\left((-1)^{l} \Delta_{n}\right) \\
& =(-1)^{l} \sigma\left(\Delta_{n}\right)=(-1)^{l}(-1)^{k} \Delta_{n} \\
& =(-1)^{l+k} \Delta_{n}
\end{aligned}
$$

From this computation we see the same rules as for adding even and odd integers:

σ	σ^{\prime}	$\sigma \sigma^{\prime}$
even	even	even
odd	even	odd
even	odd	odd
odd	odd	odd

In particular, if $\sigma, \sigma^{\prime} \in A_{n}\left(\sigma, \sigma^{\prime}\right.$ are both even) then $\sigma \sigma^{\prime} \in A_{n}\left(\sigma \sigma^{\prime}\right.$ is even). Also the identity is even, so it is in A_{n}. Further, if $\sigma \in A_{n}(\sigma$ is even $)$, then since $\sigma \sigma^{-1}=e \in A_{n}\left(\sigma \sigma^{-1}\right.$ is even) we must have $\sigma^{-1} \in A_{n}$ (σ^{-1} is even). Thus A_{n} is a subgroup of S_{n}.

An alternative characterization of the parity of a permutation is as follows:

- If $\sigma=\tau_{1} \cdots \tau_{k}$ where τ_{i} are transpositions, then σ is odd if and only if k is odd.

To prove this we first show that every transposition is odd. First consider the transposition $\sigma=(12) \in S_{n}$. There are four kinds of factors in Δ_{n} :

$$
\left(x_{1}-x_{2}\right), \quad\left(x_{1}-x_{j}\right)(j>2), \quad\left(x_{2}-x_{j}\right)(j>2), \quad\left(x_{i}-x_{j}\right)(j>i>2)
$$

Now $\sigma=(12)$ only swaps 1 and 2. So it sends the first type of factor to its negative $\left(x_{2}-x_{1}\right)=-\left(x_{2}-x_{1}\right)$. It interchanges the second and third types (preserving signs), and fixes all factors of the fourth type. Taking the product we conclude $\sigma\left(\Delta_{n}\right)=-\Delta_{n}$, where the sign comes from the effect of $\sigma=(12)$ on the factor $\left(x_{1}-x_{2}\right)$. Next, we use:

- Let $\sigma=\left(a_{1} a_{2} \cdots a_{k}\right) \in S_{n}$ be a cycle and $\tau \in S_{n}$ any other permutation. Then

$$
\tau \sigma \tau^{-1}=\left(\tau\left(a_{1}\right) \quad \tau\left(a_{2}\right) \cdots \tau\left(a_{k}\right)\right)
$$

A special case is when $\sigma=(i j)$ a transposition different from (12) with $j>i$. Setting $\tau=(i 1)(j 2)$ we get $\tau^{-1} \sigma \tau=(12)$. If $i=1$, interpret ($\left.i 1\right)$ as e.

Now let σ be any transposition and choose τ as above such that $\tau \sigma \tau^{-1}=$ (12). Then $\sigma=\tau^{-1}(12) \tau$. Let $\tau\left(\Delta_{n}\right)=(-1)^{k} \Delta_{n}$. Note also $\tau^{-1}\left(\Delta_{n}\right)=(-1)^{k} \Delta_{n}$. We then compute

$$
\begin{aligned}
\sigma\left(\Delta_{n}\right) & =\left(\tau^{-1}(12) \tau\right)\left(\Delta_{n}\right) \\
& =\tau^{-1}\left((12)\left(\tau\left(\Delta_{n}\right)\right)\right) \\
& \left.=\tau^{-1}\left((12)(-1)^{k} \Delta_{n}\right)\right) \\
& =(-1)^{k} \tau^{-1}\left((12)\left(\Delta_{n}\right)\right) \\
& =(-1)^{k} \tau^{-1}\left(-\Delta_{n}\right) \\
& =(-1)^{k+1} \tau^{-1}\left(\Delta_{n}\right) \\
& =(-1)^{2 k+1} \Delta_{n}=-\Delta_{n}
\end{aligned}
$$

This completes our claim that every transposition is odd. Then to prove the claim about $\sigma=\tau_{1} \cdots \tau_{k}$ for a product of transpositions, we use the rules of the table we determined above.

Let us look at some examples. As $S_{1}=\{e\}$ we of course have $A_{1}=\{e\}$. Next, $S_{2}=\{e,(12)\}$, and (12) is odd, so in fact $A_{2}=\{e\}$ as well. The 3rd symmetric group is

$$
S_{3}=\{e,(12),(23),(31),(123),(132)\}
$$

The three transpositions (12), (23), (31) are odd, so they are not in A_{3}. On the other hand $(123)=(13)(12)$ and $(132)=(12)(13)$, so these are even. Thus

$$
A_{3}=\{e,(123),(132)\}
$$

Note that $(123)^{2}=(132)$ and $(123)^{3}=e$, so A_{3} is a cyclic (hence abelian) group of order 3 . This is in contrast to S_{3}. However:

- The alternating group A_{n} is non-abelian if and only if $n \geqslant 4$.

Symmetries of the tetrahedron

The first non-abelian alternating group, A_{4}, is closely related to the rotational symmetries of the tetrahedron in 3-dimensional space.

A tetrahedron is a solid in 3-dimensional Euclidean space which has 4 vertices and 4 sides, each an equilateral triangle. On the next page we list the symmetries of the tetrahedron. There are 2 types of non-identity symmetries. The first type $\left(R_{1}^{ \pm 1}, R_{2}^{ \pm 1}, R_{3}^{ \pm 1}, R_{4}^{ \pm 1}\right)$ fixes a vertex and rotates the tetrahedron around an axis passing through the fixed vertex by 120° in one of two directions. The second kind of symmetry (A, B, C) is a 180° rotation through an axis which passes through the centers of two opposite edges.

If we label the vertices of the tetrahedron by $\{1,2,3,4\}$ we can associate a permutation to each symmetry. Magically, the subgroup of S_{4} corresponding to the symmetries of the tetrahedron is A_{4} ! Below we include the Cayley table.

	e	R_{1}	R_{1}^{-1}	R_{2}	R_{2}^{-1}	R_{3}	R_{3}^{-1}	R_{4}	R_{4}^{-1}	A	B
e	e	R_{1}	R_{1}^{-1}	R_{2}	R_{2}^{-1}	R_{3}	R_{3}^{-1}	R_{4}	R_{4}^{-1}	A	B
R_{1}	R_{1}	R_{1}^{-1}	e	A	R_{4}	B	R_{2}	C	R_{3}	R_{3}^{-1}	R_{4}^{-1}
R_{1}^{-1}	R_{1}^{-1}	e	R_{1}	R_{3}^{-1}	C	R_{4}^{-1}	A	R_{2}^{-1}	B	R_{2}	R_{3}
R_{2}	R_{2}	C	R_{4}^{-1}	R_{2}^{-1}	e	R_{1}	B	R_{3}^{-1}	A	R_{1}^{-1}	R_{4}
R_{2}^{-1}	R_{2}^{-1}	R_{3}	A	e	R_{2}	C	R_{4}	B	R_{1}^{-1}	R_{4}^{-1}	R_{3}^{-1}
R_{3}	R_{3}	A	R_{2}^{-1}	R_{4}^{-1}	B	R_{3}^{-1}	e	R_{1}	C	R_{4}	R_{1}^{-1}
R_{3}^{-1}	R_{3}^{-1}	R_{4}	B	C	R_{1}^{-1}	e	R_{3}	A	R_{2}	R_{1}	R_{2}^{-1}
R_{4}	R_{4}	B	R_{3}^{-1}	R_{1}	A	R_{2}^{-1}	C	R_{4}^{-1}	e	R_{3}	R_{2}
R_{4}^{-1}	R_{4}^{-1}	R_{2}	C	B	R_{3}	A	R_{1}^{-1}	e	R_{4}	R_{2}^{-1}	R_{1}
A	A	R_{2}^{-1}	R_{3}	R_{4}	R_{1}	R_{1}^{-1}	R_{4}^{-1}	R_{2}	R_{3}^{-1}	e	C
B	B	R_{3}^{-1}	R_{4}	R_{3}	R_{4}^{-1}	R_{2}	R_{1}	R_{1}^{-1}	R_{2}^{-1}	C	e
C	C	R_{4}^{-1}	R_{2}	R_{1}^{-1}	R_{3}^{-1}	R_{4}	R_{2}^{-1}	R_{3}	R_{1}	B	A

Symmetries of the tetrahedron.

