Symmetric groups

In this lecture we continue our study of the symmetric groups S_{n} introduced last lecture, and we then introduce the notion of even and odd permutations.

- The order of the group S_{n} is given by $\left|S_{n}\right|=n!$.

This is a basic counting exercise. Each permutation σ is a way of rearranging the elements $\{1, \ldots, n\}$. There are n possibilities for $\sigma(1) \in\{1, \ldots, n\}$. Once the value of $\sigma(1)$ is fixed, there are $n-1$ possibilities left for $\sigma(2)$, since it can be anything except for $\sigma(1)$. Continuing in this fashion, we see that the number of possibilities for the permutation $\sigma \in S_{n}$ is equal to $n(n-1)(n-2) \cdots 2 \cdot 1=n$!.

For example, we have seen that $\left|S_{1}\right|=1=1$!, $\left|S_{2}\right|=2=2$! and $\left|S_{3}\right|=6=3$!. Recall that S_{3} is essentially the symmetries of an equilateral triangle, and there are 6 such symmetries.

A cycle is a permutation $\sigma \in S_{n}$ such that there exists an $i \in\{1, \ldots, n\}$ with the property that for each $j \in\{1, \ldots, n\}$ either $\sigma(j)=j$ or $j=\sigma^{k}(i)$ for some $k \in \mathbb{Z}$. In other words, every element of $\{1, \ldots, n\}$ is either fixed by σ or can be obtained from i by successively applying σ. Our notation for such a cycle, which we introduced last lecture, is as follows:

$$
\left(\begin{array}{lllll}
i & \sigma(i) & \sigma^{2}(i) & \cdots & \left.\sigma^{l-1}(i)\right)
\end{array}\right.
$$

Here l is the smallest positive integer such that $\sigma^{l}(i)=i$.

- Every $\sigma \in S_{n}$ can be written as a product of disjoint cycles.

Two cycles are disjoint if they share no common elements in their cycle notations. For example, (13) and (246) are disjoint cycles, while (12) and (254) are not. To prove the statement, define a relation on the set $\{1, \ldots, n\}$ as follows: $i \sim j$ if and only if $\sigma^{k}(i)=j$ for some $k \in \mathbb{Z}$. You can check that this defines an equivalence relation, and hence partitions the set $\{1, \ldots, n\}$, and each equivalence class forms a cycle with respect to σ.

The content of the above is that any permutation $\sigma \in S_{n}$ partitions the set $\{1,2, \ldots, n\}$ into subsets each of which σ permutes in a cyclic fashion. For example, $\sigma=(245)(16) \in S_{6}$ is depicted above. Note that σ fixes " 3 " and this does not appear in cycle notation.

Disjoint cycles in S_{n} commute.

The length of a cycle is the number of elements appearing in it: (146) is a cycle of length 3 , and (4263) is length 4. A transposition is a cycle of length 2, such as (12).

For $n \geqslant 2$, every $\sigma \in S_{n}$ is a product of transpositions.
We first note that an arbitrary cycle $\left(a_{1} a_{2} \cdots a_{k}\right)$ can be written

$$
\left(a_{1} a_{2} \cdots a_{k-1} a_{k}\right)=\left(a_{3} a_{2}\right)\left(a_{4} a_{3}\right) \cdots\left(a_{k} a_{k-1}\right)\left(a_{1} a_{k}\right)
$$

For example, $(245)=(45)(24)$. The general case follows from the case of cycles, because any $\sigma \in S_{n}$ is a product of cycles.

The way in which a cycle is written as a product of transpositions is not unique. As an example, we have $(12)(13)=(132)=(23)(12)$ in the group S_{3}. In fact, another formula for writing an arbitrary cycle as a product of transpositions is as follows:

$$
\left(a_{1} a_{2} \cdots a_{k-1} a_{k}\right)=\left(a_{1} a_{k}\right)\left(a_{1} a_{k-1}\right) \cdots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
$$

Even and odd permutations

Let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in n variables. Given a permutation $\sigma \in S_{n}$ define a new polynomial $\sigma(f)$ to be $f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. Define the special polynomial

$$
\Delta_{n}=\prod_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)
$$

to be the product ofl all factors $\left(x_{i}-x_{j}\right)$ where i, j range over elements of $\{1, \ldots, n\}$ with $i<j$. Then we may apply any permutation σ to this to obtain a new polynomial $\sigma\left(\Delta_{n}\right)$. It turns out that this new polynomial is always either Δ_{n} or $-\Delta_{n}$. This lets us divide permutations into two types, as follows:

- If $\sigma\left(\Delta_{n}\right)=\Delta_{n}$ is called even. If $\sigma\left(\Delta_{n}\right)=-\Delta_{n}$ then σ is called odd.

For example, consider $\sigma=(12) \in S_{3}$. Note $\Delta_{3}=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$. Then

$$
\begin{aligned}
\sigma\left(\Delta_{3}\right) & =\left(x_{\sigma(1)}-x_{\sigma(2)}\right)\left(x_{\sigma(1)}-x_{\sigma(3)}\right)\left(x_{\sigma(2)}-x_{\sigma(3)}\right) \\
& =\left(x_{2}-x_{1}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) \\
& =-\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{1}-x_{3}\right) \\
& =-\Delta_{3}
\end{aligned}
$$

Thus $\sigma=(12)$ is odd. In the next lecture we will show that the even permutations form a subgroup of S_{n} called the alternating group A_{n}.

