Orders of group elements

Let G be an arbitrary group, and let $a \in G$ be an element. The order of a, written ord (a), is the smallest positive integer k such that a^{k} is the identity:

$$
\operatorname{ord}(a)=\min \left\{k \in \mathbb{Z}: k>0, a^{k}=e\right\}
$$

Our convention is that if the set appearing in this definition is empty, in other words if a^{k} is never the identity, then $\operatorname{ord}(a)=\infty$.

- If $a \in G$ and G is a finite group, then $\operatorname{ord}(a) \leqslant|G|$.

To prove this, consider the sequence a, a^{2}, a^{3}, \ldots. Because this is a sequence of elements in G and G has $|G|$ elements, after $|G|+1$ terms in this sequence we must have a repeated entry. In other words, there are positive integers i, j such that $i<j$, and $j \leqslant|G|+1$, and $a^{i}=a^{j}$. Then $e=a^{j} a^{-i}=a^{j-i}$ and therefore ord $(a) \leqslant j-i \leqslant|G|$.

Let's consider some examples. First, note if $\operatorname{ord}(a)=1$, then $a=a^{1}=e$, so a is the identity.
Consider the group $\left(\mathbb{Z}_{n},+\right)$. If $a \in \mathbb{Z}_{n}$ is equal to $m(\bmod n)$, then " $a^{k}=a \cdots a$ " is given by

$$
m+\cdots+m \equiv k m \quad(\bmod n)
$$

In this case $|G|=n$ and $n \cdot m \equiv 0(\bmod n)$, which exhibits $\operatorname{ord}(a) \leqslant|G|$. Let us consider the case $n=8$. The element $6(\bmod 8)$ has $4 \cdot 6 \equiv 24 \equiv 0(\bmod 8)$, while $3 \cdot 6 \equiv 18 \equiv 2(\bmod 8)$, $2 \cdot 6 \equiv 12 \equiv 4(\bmod 8)$. Thus the order of $6(\bmod 8)$ in the group \mathbb{Z}_{8} is equal to 4 .

- The order of $m(\bmod n)$ in the group $\left(\mathbb{Z}_{n},+\right)$ is equal to $n / \operatorname{gcd}(n, m)$.

Let us prove this. Note $n / \operatorname{gcd}(n, m)$ and $m / \operatorname{gcd}(n, m)$ are integers. Then we have

$$
\frac{n}{\operatorname{gcd}(n, m)} \cdot m \equiv n \cdot \frac{m}{\operatorname{gcd}(n, m)} \equiv 0 \quad(\bmod n)
$$

Therefore $\operatorname{ord}(m) \leqslant n / \operatorname{gcd}(n, m)$. On the other hand, letting $\operatorname{ord}(m)=k$, we have $k m \equiv 0$ $(\bmod n)$, i.e. $k m=n l$ for some $l \in \mathbb{Z}$. Then we have the following relation:

$$
k \cdot \frac{m}{\operatorname{gcd}(n, m)}=\frac{n}{\operatorname{gcd}(n, m)} \cdot l
$$

Each factor is an integer. From the definition of the greatest common divisor it follows that $n / \operatorname{gcd}(n, m)$ and $m / \operatorname{gcd}(n, m)$ are relatively prime. From this it follows that k is divisible by $n / \operatorname{gcd}(n, m)$, and in particular $\operatorname{ord}(m)=k \geqslant n / \operatorname{gcd}(n, m)$. Thus ord $(m)=n / \operatorname{gcd}(n, m)$.

For example, $8 / \operatorname{gcd}(8,6)=8 / 2=4$ and this agrees with our previous determination of the order of $6(\bmod 10)$ inside $\left(\mathbb{Z}_{10},+\right)$ from above.

```
If gcd}(n,m)=1, then m(\operatorname{mod}n)\mathrm{ generates the group (}\mp@subsup{\mathbb{Z}}{n}{},+)
```

This follows from the fact that $\operatorname{gcd}(n, m)=1$ implies m has order $n=\left|\mathbb{Z}_{n}\right|$. (See also the next proposition below.) Recall that in general $a \in G$ generates G if all elements in G can be written as a^{k} for some $k \in \mathbb{Z}$. To illustrate this for $3 \in\left(\mathbb{Z}_{10},+\right)$, we compute in \mathbb{Z}_{10} :

$$
\begin{array}{lllll}
1 \cdot 3=3, & 2 \cdot 3=6, & 3 \cdot 3=9, & 4 \cdot 3=2, & 5 \cdot 3=5, \\
6 \cdot 3=8, & 7 \cdot 3=1, & 8 \cdot 3=4, & 9 \cdot 3=7, & 10 \cdot 3=0 .
\end{array}
$$

Thus we get all of the group $\left(\mathbb{Z}_{10},+\right)$ by successively adding 3 to itself.

We next turn to the group $\left(\mathbb{Z}_{n}^{\times}, \times\right)$. Unlike the previous examples, the notation in this group agrees nicely with the general notation $a^{k}=a \cdots a$ for the $k^{t h}$ power of an element.

Suppose $n=10$. Then $\mathbb{Z}_{10}^{\times}=\{1,3,7,9\}$. We have $3^{2} \equiv 9(\bmod 10)$ and $3^{3} \equiv 27 \equiv 7(\bmod 10)$ while $3^{4} \equiv 3 \cdot 7 \equiv 21 \equiv 1(\bmod 10)$. Thus the order of $3 \in \mathbb{Z}_{10}^{\times}$is equal to 4 . On the other hand, $9^{2} \equiv 81 \equiv 1(\bmod 10)$ so the order of 9 is equal to 2 .

It is important, as always, to know what group we are working in and what the group operation is. For example, $3(\bmod 10)$ can also be viewed as an element of the group $\left(\mathbb{Z}_{10},+\right)$, but in this case it has order $10 / \operatorname{gcd}(10,3)=10$ as we saw above.

- Given $a \in G$, let $\langle a\rangle=\left\{a^{k}: k \in \mathbb{Z}\right\} \subset G$. Then $\langle a\rangle$ is a subgroup, and ord $(a)=|\langle a\rangle|$. If $\operatorname{ord}(a)$ is finite, then $\langle a\rangle$ consists of the distinct elements

$$
e=a^{0}, a^{1}, a^{2}, a^{3}, \ldots, a^{\operatorname{ord}(a)-1}
$$

If $\operatorname{ord}(a)=\infty$ then $a^{k}=a^{l}$ for $k, l \in \mathbb{Z}$ if and only if $k=l$.
The verification that $\langle a\rangle$ is a subgroup is straightforward and left as an exercise. So let us suppose $\operatorname{ord}(a)$ is finite. Let $m \in \mathbb{Z}$. We aim to show that $a^{m} \in\langle a\rangle$ is among the list of elements shown above. For this we use division with remainder: write

$$
m=\operatorname{ord}(a) \cdot q+r
$$

where $q, r \in \mathbb{Z}$ and $0 \leqslant r<\operatorname{ord}(a)$, the remainder. Then we compute

$$
a^{m}=a^{\operatorname{ord}(a) \cdot q+r}=a^{\operatorname{ord}(a) \cdot q} a^{r}=\left(a^{\operatorname{ord}(a)}\right)^{q} a^{r}=e^{q} a^{r}=a^{r}
$$

Furthermore, a^{r} is on the list, because $0 \leqslant r<\operatorname{ord}(a)$. This shows $\langle a\rangle$ consists of the elements in the list given, and in particular $|\langle a\rangle| \leqslant \operatorname{ord}(a)$. Finally, we know ord $(a) \leqslant|\langle a\rangle|$, and so $|\langle a\rangle|=\operatorname{ord}(a)$, and consequently the elements in the list must all be distinct. The case in which $\operatorname{ord}(a)=\infty$ is left as an exercise.

Recall that a group G is cyclic if there is an $a \in G$ such that $\langle a\rangle=G$. Thus G is cyclic if and only if there is an element of order $|G|$. Recall $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$ are cyclic.

Let us illustrate these concepts with a few more examples. Consider $\mathbb{Z}_{5}^{\times}=\{1,2,3,4\}$. This is a group of order 4 and we display its Cayley table below. Note $2^{0}=1,2^{1}=2,2^{2}=4$, $2^{3}=3$, where of course all operations are modulo 5 . Thus $2 \in \mathbb{Z}_{5}^{\times}$generates the group. The same is true for 3 (but not for 1 or 4). Thus \mathbb{Z}_{5}^{\times}is cyclic.

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Next, consider the group $\left(\mathbb{Z}_{8}^{\times}, \times\right)$. We have $\mathbb{Z}_{8}^{\times}=\{1,3,5,7\}$ and so like the previous example, this is a group of order 4. Its Cayley table is displayed below.

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

However we see that every element squares to the identity. In particular, no element is of order 4. Therefore \mathbb{Z}_{8}^{\times}is not cyclic.

Finally, consider the following element of the general linear group $\mathrm{GL}_{2}(\mathbb{R})$:

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

A short computation shows $A^{2}=-I, A^{3}=-A, A^{4}=I$ where I is the 2×2 identity matrix. Thus $\operatorname{ord}(A)=4$. This is an example of an element of finite order in an infinite group.

