More modular arithmetic

Last time, for any given positive integer n, we introduced the set \mathbb{Z}_{n}, which is obtained from \mathbb{Z} by identifying integers which differ by a multiple of n. We defined a group operation on \mathbb{Z}_{n} called " + " which is inherited from addition in \mathbb{Z}. In this lecture we continue studying further algebraic properties and structures on \mathbb{Z}_{n}.

Another natural operation to consider on \mathbb{Z}_{n} is multiplication: writing $a(\bmod n)$ for the equivalence class of $a \in \mathbb{Z}$, we define the product of $a(\bmod n)$ and $b(\bmod n)$ to be $a b$ $(\bmod n)$. Alternatively, if we write $[a]$ for the equivalence class of $a \in \mathbb{Z}$, our definition is:

$$
[a][b]=[a b]
$$

This is well-defined: if $\left[a^{\prime}\right]=[a]$ and $\left[b^{\prime}\right]=[b]$, then $a^{\prime}-a=n k$ and $b^{\prime}-b=n l$ for some $k, l \in \mathbb{Z}$, so $a^{\prime} b^{\prime}-a b=a^{\prime}\left(b^{\prime}-b\right)+b\left(a^{\prime}-a\right)=n\left(l a^{\prime}+k b\right)$, and therefore $\left[a^{\prime} b^{\prime}\right]=[a b]$.

- The operations of addition and multiplication on \mathbb{Z}_{n} satisfy the properties:

$$
\begin{array}{r|l}
\text { (Associativity for }+ \text {) } & a+(b+c) \equiv(a+b)+c(\bmod n) \\
\text { (Associativity for } \times) & a(b c) \equiv(a b) c(\bmod n) \\
\text { (Identity for }+ \text {) } & a+0 \equiv 0+a \equiv a(\bmod n) \\
\text { (Identity for } \times) & 1 \cdot a \equiv a \cdot 1 \equiv a(\bmod n) \\
\text { (Inverses for }+ \text {) } & a+(-a) \equiv(-a)+a \equiv 0(\bmod n) \\
\text { (Distributivity) } & a(b+c) \equiv a b+a c(\bmod n) \\
\text { (Commutativity for }+) & a+b \equiv b+a(\bmod n) \\
\text { (Commutativity for } \times) & a b \equiv b a(\bmod n)
\end{array}
$$

In short, all the formal properties you are familiar with in \mathbb{Z} hold in \mathbb{Z}_{n}. A structure with two operations ("addition" and "multiplication") satisfying all of the above formal properties is called a (commutative) ring. However we will hold off on studying general rings.

Included in the above list are the axioms for $\left(\mathbb{Z}_{n},+\right)$ to be an abelian group. However, except in the degenerate case $n=1$ for which $0 \equiv 1(\bmod 1)$, the set \mathbb{Z}_{n} with multiplication does not form a group. This is because $0 \in \mathbb{Z}_{n}$ does not have a multiplicative inverse. The problem is not just 0 , however. For example, in $\mathbb{Z}_{4}=\{0,1,2,3\}$ we have:

$$
2 \cdot 0 \equiv 0 \quad(\bmod 4), \quad 2 \cdot 1 \equiv 2 \quad(\bmod 4), \quad 2 \cdot 2 \equiv 0 \quad(\bmod 4), \quad 2 \cdot 3 \equiv 2 \quad(\bmod 4)
$$

Thus there is no element of \mathbb{Z}_{4} which is a multiplicative inverse for 2 ; such an element $x \in \mathbb{Z}_{4}$ would have to have $2 \cdot x \equiv 1(\bmod 4)$. After reviewing some basic properties of the integers we will show how to "correct" this problem, by eliminating certain elements from \mathbb{Z}_{n} so that it becomes a group with multiplication.

The group \mathbb{Z}_{n}^{\times}

An integer d is a divisor of an integer a if $a=d k$ for some $k \in \mathbb{Z}$. An positive integer d is a greatest common divisor of a and b, written $d=\operatorname{gcd}(a, b)$, if it satisifes the following property: for any integer d^{\prime} dividing both a and b, we have that d^{\prime} divides d. A good exercise is to check that there is a unique greatest common divisor for any $a, b \in \mathbb{Z}$. As an example, we have $\operatorname{gcd}(9,24)=3$. The key property we are after is:

Let $a, b \in \mathbb{Z}$ be non-zero integers. Then there exist integers $r, s \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a r+b s
$$

As an illustration, we can see directly that this is true for $a=9, b=24$:

$$
9(3)+24(-1)=3
$$

so upon choosing $r=3, s=-1$ we have the desired relation.
To prove the statement in general, we proceed by considering the subset of \mathbb{Z} defined by

$$
S=\{a m+b n: m, n \in \mathbb{Z}, a m+b n>0\}
$$

As a, b are non-zero, the set S is non-empty. For example, with $m=a$ and $n=b$ we have $a m+b n=a^{2}+b^{2}>0$, so $a^{2}+b^{2}$ is in S. Let d be the smallest element in S. Then $d=a r+b s$ for some $r, s \in \mathbb{Z}$. The claim is that $d=\operatorname{gcd}(a, b)$. To prove this we use division with remainder for integers, applied to a divided by d : that is, we can write

$$
a=d q+r^{\prime}
$$

where $q, r^{\prime} \in \mathbb{Z}$ and $0 \leqslant r^{\prime}<d$ (the remainder). We can then write

$$
r^{\prime}=a-d q=a-(a r+b s) q=a(1-r q)-b(s q)
$$

If $r^{\prime}>0$ then $r^{\prime} \in S$ and is less than d, a contradiction to our minimality assumption on d. Thus $r^{\prime}=0$, and $a=d q$, so d divides a. A similar argument shows d divides b. Thus d divides both a and b. Finally, we must show that if d^{\prime} divides both a and b then it divides d. If d^{\prime} divides a then $a=d^{\prime} k$ and if d^{\prime} divides b then $b=d^{\prime} l$. So $d=a r+b s=d^{\prime} k r+d^{\prime} l s=d^{\prime}(k r+l s)$, and thus d^{\prime} divides d. Therefore $d=\operatorname{gcd}(a, b)$. This completes the proof.

- In $\mathbb{Z}_{n}, a(\bmod n)$ has a multiplicative inverse if and only if $\operatorname{gcd}(a, n)=1$.

To see this, first suppose $a(\bmod n)$ has a multiplicative inverse, i.e. there is some integer b such that $a b \equiv 1(\bmod n)$, or equivalently $a b-1=n k$ for some integer k. Thus $a b-n k=1$. If d divides a and n, it divides $a b-n k=1$, so d divides 1 . Thus $\operatorname{gcd}(a, n)=1$. Conversely, suppose $\operatorname{gcd}(a, n)=1$. There exists $r, s \in \mathbb{Z}$ such that $\operatorname{gcd}(a, n)=a r+n s$. Then $a r-1=-n s$, so $a r \equiv 1(\bmod n)$. Thus $r(\bmod n)$ is a multiplicative inverse for $a(\bmod n)$.

If $\operatorname{gcd}(a, b)=1$ then a, b are said to be relatively prime. This motivates the following definition: we let \mathbb{Z}_{n}^{\times}denote the subset of \mathbb{Z}_{n} consisting of elements relatively prime to n :

$$
\mathbb{Z}_{n}^{\times}=\{a(\bmod n): \quad \operatorname{gcd}(a, n)=1\}
$$

- The set \mathbb{Z}_{n}^{\times}equipped with the operation of multiplication defines a group.

Let us look at some examples. First, consider the integers $\bmod 4$, i.e. \mathbb{Z}_{4}. Then we have

$$
\mathbb{Z}_{4}^{\times}=\{1,3\} \subset \mathbb{Z}_{4}=\{0,1,2,3\}
$$

As is often done, we have just written " 1 " etc. for the equivalence class " $1(\bmod 4)$ " which we also previously wrote as " $[1]$ ". In conclusion, \mathbb{Z}_{4}^{\times}is a finite abelian group of order 2.

Next, consider \mathbb{Z}_{10}, the integers modulo 10. In this case we find:

$$
\mathbb{Z}_{10}^{\times}=\{1,3,7,9\} \subset \mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}
$$

Thus \mathbb{Z}_{10}^{\times}is a finite abelian group of order 4 . For example, $3 \cdot 7 \equiv 21 \equiv 1(\bmod 10)$, so the inverse of $3(\bmod 10)$ is $7(\bmod 10)$, and conversely. Here is the Cayley table for $\left(\mathbb{Z}_{10}^{\times}, \times\right)$:

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

When n is a prime number p, then $\mathbb{Z}_{p}^{\times}=\{1, \ldots, p-1\}$. For example, $\mathbb{Z}_{7}^{\times}=\{1,2,3,4,5,6\}$.

- Suppose $\operatorname{gcd}(a, n)=1$ and b any integer. Then the equation in \mathbb{Z}_{n} given by

$$
a x \equiv b \quad(\bmod n)
$$

can always be solved for x, and the solution x is unique as an element of \mathbb{Z}_{n}.
To see that this statement is true, we use the fact that $a(\bmod n)$ has an inverse in \mathbb{Z}_{n}^{\times}and multiply both sides of the equation by this inverse.

For example, consider the equation $7 x \equiv 6(\bmod 10)$ in \mathbb{Z}_{10}. Then multiply both sides by $3(\bmod 10)$ to get $x \equiv 18 \equiv 8(\bmod 10)$. On the other hand, we saw earlier that $2 x \equiv 1$ $(\bmod 4)$ has no solutions, but in this case $\operatorname{gcd}(2,4)=2 \neq 1$.

Euclidean Algorithm

Above we have seen that $a(\bmod n)$ is invertible in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)=1$. In practice, how can we find the inverse? We use the Euclidean algorithm.

The algorithm takes two integers a, b and computes $\operatorname{gcd}(a, b)$. By recording each step of the algorithm one has the information to find $r, s \in \mathbb{Z}$ such that

$$
a r+b s=\operatorname{gcd}(a, b) .
$$

In the case that $b=n$ and $\operatorname{gcd}(a, n)=1$, the inverse of $a(\bmod n)$ is given by $r(\bmod n)$.
The algorithm is as follows. Assume $a>b>0$. Set $r_{1}=a, r_{2}=b$. Divide a by b to obtain

$$
r_{1}=r_{2} q_{1}+r_{3}
$$

where $0 \leqslant r_{3}<r_{2}$ is the remainder. Continue in this fashion to obtain a sequence of nonnegative integers $r_{1}, r_{2}, r_{3}, \ldots$: if one has computed up to r_{k}, then divide r_{k-1} by r_{k} to obtain

$$
r_{k-1}=r_{k} q_{k-1}+r_{k+1}
$$

where $0 \leqslant r_{k+1}<r_{k}$ is the remainder. As each r_{k} is non-negative and smaller than the previous entry r_{k-1}, this process must eventually stop. The last non-zero r_{k} obtained is $\operatorname{gcd}(a, b)$!

Let us do a simple example: $a=17, b=11$. We compute:

$$
\begin{aligned}
& 17=11 \cdot 1+6 \\
& 6=17-11 \\
& 11=6 \cdot 1+5 \\
& 5=11-6 \\
& 6=5 \cdot 1+1 \\
& 1=6-5
\end{aligned}
$$

The left column shows the algorithm as described; it terminates at " 1 " which is $\operatorname{gcd}(17,11)$. But we can say more! In the right column we have rearranged each equation to solve for the remainder. Now starting from " 1 " (the gcd) we continually substitute the expressions in the right column to obtain an end result in terms of the original $a=17$ and $b=11$:

$$
\begin{aligned}
\operatorname{gcd}(17,11)=1 & =6-5 \\
& =(17-11)-(11-6) \\
& =17-2(11)+6 \\
& =17-2(11)+(17-11) \\
& =2(17)-3(11)
\end{aligned}
$$

In particular, we see that $-3(11) \equiv 1(\bmod 17)$, and so $-3(\bmod 17)$, which is the same as $14(\bmod 17)$, is the inverse of $11(\bmod 17)$.

