Integers modulo n

In this lecture we discuss some of the most important examples of groups: ones which come from taking certain equivalence classes of integers. To begin, we recall the notion of equivalence relations. Let S be a set, and $R \subset S \times S$ a subset. Write $a \sim b$ if and only if $(a, b) \in R$. Then R is an equivalence relation on the set S if the following hold:

1. (Reflexivity) $a \sim a$ for all $a \in S$.
2. (Symmetry) $a \sim b$ implies $b \sim a$.
3. (Transitivity) $a \sim b$ and $b \sim c$ implies $a \sim c$.

Given an equivalence relation on S as above, we write $[a]=\{b \in S: b \sim a\}$ for the equivalence class of a, which is a subset of S.

A partition of a set S is a collection of non-empty subsets $\left\{S_{i}\right\}_{i \in I}$ of S such that the union of all S_{i} over $i \in I$ is equal to S, and the subsets are pairwise disjoint: $S_{i} \cap S_{j}=\varnothing$ if $i \neq j$. For example, for a set with 5 elements represented by dots, here are depicted a few different partitions of S, where the subsets are encoded by colors:

Equivalence relations on sets and partitions of sets are essentially the same thing. Given an equivalence relation on S, the equivalence classes form a partition of S. Conversely, if we have a partition $\left\{S_{i}\right\}_{i \in I}$ of S, then the relation $a \sim b$ if and only if " a and b belong to some common subset S_{i} " defines an equivalence relation on S.

The group \mathbb{Z}_{n}

Fix a positive integer n. Define a relation on \mathbb{Z} as follows: $a \sim b$ if and only if $a-b=n k$ for some $k \in \mathbb{Z}$. We check that this is an equivalence relation:

1. (Reflexivity) $a \sim a$ because $a-a=n 0$.
2. (Symmetry) $a \sim b$ implies $a-b=n k$. Then $b-a=n(-k)$, implying $b \sim a$.
3. (Transitivity) $a \sim b$ and $b \sim c$ imply $a-b=n k$ and $b-c=n l$. Consequently we have $a-c=(a-b)+(b-c)=n k+n l=n(k+l)$. This implies $a \sim c$.

This equivalence relation partitions the set \mathbb{Z} into n equivalence classes.

$$
\mathbb{Z}_{n}=\{\text { equivalence classes of the relation } \sim\}=\{[0],[1], \ldots,[n-1]\}
$$

For example, if $n=3$, then \mathbb{Z}_{3} consists of the equivalence classes [0], [1], [2] where

$$
\begin{aligned}
& {[0]=\{0+3 k: k \in \mathbb{Z}\}} \\
& {[1]=\{1+3 k: k \in \mathbb{Z}\}} \\
& {[2]=\{2+3 k: k \in \mathbb{Z}\}}
\end{aligned}
$$

and these partition the integers into 3 subsets. More generally, $[0],[1], \ldots,[n-1]$ are the equivalence classes of this relation. The set \mathbb{Z}_{n} is called the integers modulo n or the integers $\bmod n$. Another notation for $a \sim b$ is: $a \equiv b(\bmod n)$. In summary we have:

$$
[a]=[b] \quad \Longleftrightarrow \quad a-b=n k \text { for some } k \in \mathbb{Z} \quad \Longleftrightarrow \quad a \equiv b(\bmod n)
$$

Next, we define a binary operation " + " on the set \mathbb{Z}_{n} as follows:

$$
[a]+[b]=[a+b]
$$

We first check this is well-defined. That is, suppose $\left[a^{\prime}\right]=[a]$ and $\left[b^{\prime}\right]=[b]$, i.e. $a^{\prime}-a=n k$ and $b^{\prime}-b=n l$. Then $\left(a^{\prime}+b^{\prime}\right)-(a+b)=\left(a^{\prime}-a\right)+\left(b^{\prime}-b\right)=n k+n l=n(k+l)$. We conclude that $\left[a^{\prime}+b^{\prime}\right]=[a+b]$, and the operation is well-defined.

The set \mathbb{Z}_{n} with the operation + is an abelian group.

To verify this we check the group axioms. First, we have associativity:

$$
\begin{aligned}
{[a]+([b]+[c])=[a]+[b+c] } & =[a+(b+c)] \\
& =[(a+b)+c]=[a+b]+[c]=([a]+[b])+[c] .
\end{aligned}
$$

Next, $e=[0]$ serves as an identity, because $[a]+[0]=[a+0]=[a]$ and similarly $[0]+[a]=[a]$. Finally, an inverse for $[a] \in \mathbb{Z}_{n}$ is $[-a]$ because $[a]+[-a]=[a+(-a)]=[a-a]=[0]$. Thus $\left(\mathbb{Z}_{n},+\right)$ is a group. It is abelian because $[a]+[b]=[a+b]=[b+a]=[b]+[a]$.

The group \mathbb{Z}_{n} is sometimes written \mathbb{Z} / n or $\mathbb{Z} / n \mathbb{Z}$. When working in \mathbb{Z}_{n} we often drop the brackets from the equivalence classes and write " a " instead of " $[a]$ ". The context should make it clear that " a " means the equivalence class of $a \bmod n$, and not the integer a. Using this convention, the following is the Cayley table for the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$:

	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

For example, in \mathbb{Z}_{6} we have $1+1=2,3+3=0$ and $4+4=2$. We can also write these relations as $1+1 \equiv 2(\bmod 6), 3+3 \equiv 0(\bmod 6)$ and $4+4 \equiv 2(\bmod 6)$.

Cyclic groups

The group $\left(\mathbb{Z}_{n},+\right)$ is a finite abelian group of order n. It is also very special because it is a cyclic group. An arbitrary group G is called cyclic if there is some $a \in G$ such that

$$
G=\left\{a^{k}: k \in \mathbb{Z}\right\} .
$$

The element a is called a generator of the group G. The group $(\mathbb{Z},+)$ is cyclic with generator $1 \in \mathbb{Z}$, because any integer $a \in \mathbb{Z}$ can be written as $a=1+\cdots+1$. For a similar reason:

- The group $\left(\mathbb{Z}_{n},+\right)$ is a cyclic group.

To spell this out, take $a=[1]$. Then " a^{k} " in the group $\left(\mathbb{Z}_{n},+\right)$ is none other than [1] $+\cdots+[1]$, where [1] appears k times, which is equal to [k]. Now \mathbb{Z}_{n} consists exactly of the classes [k] as k runs over the integers; in fact, as we saw above, k need only run over $0,1, \ldots, n-1$. Thus every element of \mathbb{Z}_{n} is of the form " a^{k} " and so \mathbb{Z}_{n} is cyclic with generator [1].

In turns out the groups $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$ for positive integers n are essentially the "only" cyclic groups, in a sense that we will make precise later.

