Integers modulo n

In this lecture we discuss some of the most important examples of groups: ones which come from taking certain equivalence classes of integers. To begin, we recall the notion of equivalence relations. Let S be a set, and $R \subset S \times S$ a subset. Write $a \sim b$ if and only if $(a, b) \in R$. Then R is an *equivalence relation* on the set S if the following hold:

- 1. (Reflexivity) $a \sim a$ for all $a \in S$.
- 2. (Symmetry) $a \sim b$ implies $b \sim a$.
- 3. (Transitivity) $a \sim b$ and $b \sim c$ implies $a \sim c$.

Given an equivalence relation on S as above, we write $[a] = \{b \in S : b \sim a\}$ for the equivalence class of a, which is a subset of S.

A partition of a set S is a collection of non-empty subsets $\{S_i\}_{i \in I}$ of S such that the union of all S_i over $i \in I$ is equal to S, and the subsets are pairwise disjoint: $S_i \cap S_j = \emptyset$ if $i \neq j$. For example, for a set with 5 elements represented by dots, here are depicted a few different partitions of S, where the subsets are encoded by colors:

Equivalence relations on sets and partitions of sets are essentially the same thing. Given an equivalence relation on S, the equivalence classes form a partition of S. Conversely, if we have a partition $\{S_i\}_{i\in I}$ of S, then the relation $a \sim b$ if and only if "a and b belong to some common subset S_i " defines an equivalence relation on S.

The group \mathbb{Z}_n

Fix a positive integer n. Define a relation on \mathbb{Z} as follows: $a \sim b$ if and only if a - b = nk for some $k \in \mathbb{Z}$. We check that this is an equivalence relation:

- 1. (Reflexivity) $a \sim a$ because a a = n0.
- 2. (Symmetry) $a \sim b$ implies a b = nk. Then b a = n(-k), implying $b \sim a$.
- 3. (Transitivity) $a \sim b$ and $b \sim c$ imply a b = nk and b c = nl. Consequently we have a c = (a b) + (b c) = nk + nl = n(k + l). This implies $a \sim c$.

This equivalence relation partitions the set \mathbb{Z} into *n* equivalence classes.

 $\mathbb{Z}_n = \{ \text{equivalence classes of the relation } \sim \} = \{ [0], [1], \dots, [n-1] \}$

For example, if n = 3, then \mathbb{Z}_3 consists of the equivalence classes [0], [1], [2] where

$$[0] = \{0 + 3k : k \in \mathbb{Z}\}$$

$$[1] = \{1 + 3k : k \in \mathbb{Z}\}$$

$$[2] = \{2 + 3k : k \in \mathbb{Z}\}$$

and these partition the integers into 3 subsets. More generally, $[0], [1], \ldots, [n-1]$ are the equivalence classes of this relation. The set \mathbb{Z}_n is called the *integers modulo* n or the *integers mod* n. Another notation for $a \sim b$ is: $a \equiv b \pmod{n}$. In summary we have:

$$[a] = [b] \qquad \Longleftrightarrow \qquad a - b = nk \text{ for some } k \in \mathbb{Z} \qquad \Longleftrightarrow \qquad a \equiv b \pmod{n}$$

Next, we define a binary operation "+" on the set \mathbb{Z}_n as follows:

$$[a] + [b] = [a+b]$$

We first check this is well-defined. That is, suppose [a'] = [a] and [b'] = [b], i.e. a' - a = nkand b' - b = nl. Then (a' + b') - (a + b) = (a' - a) + (b' - b) = nk + nl = n(k + l). We conclude that [a' + b'] = [a + b], and the operation is well-defined.

• The set \mathbb{Z}_n with the operation + is an abelian group.

To verify this we check the group axioms. First, we have associativity:

$$[a] + ([b] + [c]) = [a] + [b + c] = [a + (b + c)]$$
$$= [(a + b) + c] = [a + b] + [c] = ([a] + [b]) + [c].$$

Next, e = [0] serves as an identity, because [a]+[0] = [a+0] = [a] and similarly [0]+[a] = [a]. Finally, an inverse for $[a] \in \mathbb{Z}_n$ is [-a] because [a]+[-a] = [a+(-a)] = [a-a] = [0]. Thus $(\mathbb{Z}_n, +)$ is a group. It is abelian because [a] + [b] = [a+b] = [b+a] = [b] + [a].

The group \mathbb{Z}_n is sometimes written \mathbb{Z}/n or $\mathbb{Z}/n\mathbb{Z}$. When working in \mathbb{Z}_n we often drop the brackets from the equivalence classes and write "a" instead of "[a]". The context should make it clear that "a" means the equivalence class of $a \mod n$, and not the integer a. Using this convention, the following is the Cayley table for the group $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$:

	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	3 4 5 0 1 2	3	4

For example, in \mathbb{Z}_6 we have 1 + 1 = 2, 3 + 3 = 0 and 4 + 4 = 2. We can also write these relations as $1 + 1 \equiv 2 \pmod{6}$, $3 + 3 \equiv 0 \pmod{6}$ and $4 + 4 \equiv 2 \pmod{6}$.

Note 3

Cyclic groups

The group $(\mathbb{Z}_n, +)$ is a finite abelian group of order n. It is also very special because it is a cyclic group. An arbitrary group G is called *cyclic* if there is some $a \in G$ such that

$$G = \{a^k : k \in \mathbb{Z}\}.$$

The element a is called a *generator* of the group G. The group $(\mathbb{Z}, +)$ is cyclic with generator $1 \in \mathbb{Z}$, because any integer $a \in \mathbb{Z}$ can be written as $a = 1 + \dots + 1$. For a similar reason:

• The group $(\mathbb{Z}_n, +)$ is a cyclic group.

To spell this out, take a = [1]. Then " a^k " in the group $(\mathbb{Z}_n, +)$ is none other than $[1] + \dots + [1]$, where [1] appears k times, which is equal to [k]. Now \mathbb{Z}_n consists exactly of the classes [k] as k runs over the integers; in fact, as we saw above, k need only run over $0, 1, \dots, n-1$. Thus every element of \mathbb{Z}_n is of the form " a^k " and so \mathbb{Z}_n is cyclic with generator [1].

In turns out the groups $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$ for positive integers *n* are essentially the "only" cyclic groups, in a sense that we will make precise later.

Note 3