Basic properties of groups

In this lecture we discuss some basic properties of groups which follow directly from the definition. To begin, a few words on notation. Up to now we have considered a typical group (G, \circ) with operation $a \circ b$. It is convenient to omit " \circ " from the notation and write

$$
a b=a \circ b
$$

Although this is a valid convention for any group, we will not always want to use it. For example, for the group ($\mathbb{Z},+$), writing " $a b$ " for $a \circ b=a+b$ has the shortcoming of looking like integer multiplication. But for an arbitrary abstract group it is very convenient.

The associativity property of a group tells us that $(a b) c=a(b c)$. This continues on for more complicated operations. For example, we have

$$
((a b) c) d=(a(b c)) d=a((b c) d)=a(b(c d))=(a b)(c d)
$$

Each equality uses one use of the associativity axiom. What associativity is really telling us is that we can forget about those pesky parantheses: no matter where we put them, we get the same answer. The above group element can just be written $a b c d$.

For what follows we let G be any group, with the conventions above.

- The identity element in G is unique.

Proof. Let $e, e^{\prime} \in G$ be two identity elements. Because e is an identity element, ee $=e$. Because e^{\prime} is an identity element, $e e^{\prime}=e^{\prime}$. Together we get $e=e^{\prime}$.

- The inverse of any element in G is unique.

Proof. Let $a \in G$ be be any element. Let b and c be two inverses of a. (Let us avoid calling either one a^{-1} for now.) Because b is an inverse of a we have $b a=e$. Multiply both sides of this equation on the right by c to get $b a c=c$. Because c is an inverse for a, we have $a c=e$. Thus $b a c=c$ becomes $b e=c$, and finally $b=c$.

For every $a \in G$, we have $\left(a^{-1}\right)^{-1}=a$.
Proof. The element a satisfies $a a^{-1}=a^{-1} a=e$ and thus is an inverse of a^{-1}. It then makes sense to say $a=\left(a^{-1}\right)^{-1}$ because inverses are unique.

- For all $a, b \in G$ we have $(a b)^{-1}=b^{-1} a^{-1}$.

Proof. We only need check that $b^{-1} a^{-1}$ satisfies the property of being an inverse for $a b$. To this end: $(a b)\left(b^{-1} a^{-1}\right)=a b b^{-1} a^{-1}=a e a^{-1}=a a^{-1}=e$. Similarly $\left(b^{-1} a^{-1}\right)(a b)=e$.

This last property can be used any number of times to show the following relation:

$$
\left(a_{1} a_{2} \cdots a_{n-1} a_{n}\right)^{-1}=a_{n}^{-1} a_{n-1}^{-1} \cdots a_{2}^{-1} a_{1}^{-1}
$$

We introduce some more convenient notation. Suppose n is a positive integer. Then we define the symbol a^{n} to mean the element $a a \cdots a=a \circ a \circ \cdots \circ a$ formed by applying the group operation to n copies of the element a. If n is negative, define $a^{n}=a^{-1} \cdots a^{-1}$ for $-n$ copies of a^{-1}. If $n=0$, define $a^{0}=e$, the identity element. The following is straightforward to verify:

For all $a, b \in G$ and $n, m \in \mathbb{Z}$ we have the following properties:

$$
a^{n} a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n m}, \quad(a b)^{n}=\left(b^{-1} a^{-1}\right)^{-n}
$$

The above discussion shows that in an arbitrary group G, we have all the properties we are used to with, say, matrix multiplication of invertible matrices. Furthermore:

- If G is abelian, then for all $a, b \in G$ and $n \in \mathbb{Z}$ we have $(a b)^{n}=a^{n} b^{n}$.

This is seen by writing $(a b)^{n}=a b a b \cdots a b$ and using that $a b=b a$ since G is abelian we can move the terms past one another to obtain $a \cdots a b \cdots b=a^{n} b^{n}$. However, for a general group which is not necessarily abelian, just like for matrices, we do not always have $(a b)^{n}=a^{n} b^{n}$. To further illustrate this point:

- If a group G has $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$ then G is abelian.

Proof. Suppose $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$, i.e. $a b a b=a a b b$. Multiply both sides of this equation by a^{-1} on the left and b^{-1} on the right to obtain $b a=a b$. Thus G is abelian.

In the argument just made, we used the following cancellation property, which again follows by multiplying both sides of the equation on the left or right by the appropriate element:

Let $a, b, c \in G$. If $a b=a c$ then $b=c$. If $b a=c a$ then $b=c$.

Let us illustrate how to solve equations in an abstract group. Suppose we are given

$$
(x a x)^{2}=a b x^{2} \quad x^{2} a=(x a)^{-1}
$$

where $a, b \in G$ are known and we would like to solve for $x \in G$. We do this as follows:

$$
\begin{aligned}
(x a x)^{2} & =a b x^{2} \\
x a x x a x & =a b x^{2} \\
x a\left(x^{2} a\right) x & =a b x^{2} \\
x a(x a)^{-1} x & =a b x^{2} \\
x & =a b x^{2} \\
e & =a b x \\
x & =(a b)^{-1}=b^{-1} a^{-1}
\end{aligned}
$$

Subgroups

A subset $H \subset G$ of a group G is called a subgroup if the set H with the group operation restricted from G makes H a group. If we spell this out, we see that a subset $H \subset G$ is a subgroup if and only if the following properties hold:

1. The identity element e is in H.
2. For all $a, b \in H$ we have $a b \in H$.
3. For all $a \in H$ we have $a^{-1} \in H$.

You might like to verify that these properties imply H is a subgroup. The key point is that given these properties, the axioms of a group for H are inherited from those of G. A subgroup $H \subset G$ is proper if $H \neq G$. Another good exercise is to check:

- The intersection of two subgroups $H, K \subset G$ is again a subgroup.

Examples

1. The group $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{Q},+)$ and $(\mathbb{R},+)$, and $(\mathbb{Q},+)$ is a subgroup of $(\mathbb{R},+)$.
2. The group $\left(\mathbb{Q}^{\times}, \times\right)$is a subgroup of $\left(\mathbb{R}^{\times}, \times\right)$. Note that $\left(\mathbb{Q}^{\times}, \times\right)$is not a subgroup of $(\mathbb{Q},+)$, even though $\mathbb{Q}^{\times} \subset \mathbb{Q}$, because the group operations are not the same.
3. Define $\mathrm{SL}_{2}(\mathbb{R})$ to be the set of 2×2 matrices with real entries and determinant 1 :

$$
\mathrm{SL}_{2}(\mathbb{R})=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}, \quad \operatorname{det}(A)=a d-b c=1\right\}
$$

This is called the special linear group of degree 2 over \mathbb{R}. This is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
4. For any group G, we have a subgroup $\{e\} \subset G$ called the trivial subgroup.
5. Consider $G=\{e, r, b, g, y, o\}$ of order 6 from Lecture 1. Then $\{e, r\},\{e, b\},\{e, g\}$ are subgroups of order 2, while $\{e, y, o\}$ is a subgroup of order 3. Here are their Cayley tables:

	e	r
e	e	r
r	r	e

	e	b
e	e	b
b	b	e

	e	g
e	e	g
g	g	e

	e	y	o
e	e	y	o
y	y	o	e
o	o	e	y

