Homework 9

- 1. Let $R = \{a + bx : a, b \in \mathbb{Z}_3\}$ be the set of expressions a + bx where a, b are elements of \mathbb{Z}_3 and x is a symbol (similar to $i = \sqrt{-1}$ in \mathbb{C}) which satisfies $x^2 = -1 \equiv 2 \pmod{3}$. The addition and multiplication in R is similar to that in the complex numbers.
 - (a) How many elements does the ring R have? List them.
 - (b) Show that this ring is a field.
- 2. Show each number is algebraic over \mathbb{Q} by finding its minimal polynomial.
 - (a) $\sqrt{5} 1$
 - (b) $\sqrt[3]{3+i\sqrt{2}}$
 - (c) $\sqrt{3} + \sqrt{5}$
- 3. Consider $\mathbb{Z}_2[x]/(x^3 + x + 1)$. Show this is a field with 8 elements. Write the multiplication table for the non-zero elements of this field.
- 4. (a) Let $\alpha = \sqrt[4]{5}$ and $\beta = \sqrt[4]{5} \cdot i$. Find the minimal polynomials of α and β .
 - (b) Find the degrees of the extensions $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ over \mathbb{Q} .
 - (c) Show that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are isomorphic fields.
 - (d) Show that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are not the same field.
- 5. Find a basis for each field extension, and compute the degree of the extension.
 - (a) $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}
 - (b) $\mathbb{Q}(\sqrt{3})$ over $\mathbb{Q}(\sqrt{27})$
 - (c) $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$ over \mathbb{Q}
- (a) Decide whether each given number is algebraic over Q, and explain your answer. For the ones which are algebraic, find their minimal polynomials.

$$\alpha_1 = \sqrt{3}, \qquad \alpha_2 = \sqrt{1 + \sqrt{5^2 - 4^2}}, \qquad \alpha_3 = \pi + 1,$$

 $\alpha_4 = \sqrt[3]{5 + \sqrt{2}}, \qquad \alpha_5 = \sqrt{\pi}, \qquad \alpha_6 = \sqrt{5}$

- (b) Compute the extension degree $[\mathbb{Q}(\alpha_i) : \mathbb{Q}]$ for each α_i appearing above.
- (c) Determine which are algebraic:

$$\alpha_1 \alpha_2, \qquad \alpha_2 / \alpha_4, \qquad \alpha_3 - \alpha_5^2, \qquad \alpha_5^{100}, \qquad \sqrt[101]{\alpha_6}$$

(d) Show that $\mathbb{Q}(\alpha_1 + \alpha_6) = \mathbb{Q}(\alpha_1, \alpha_6)$.