Homework 9

1. Let $R=\left\{a+b x: a, b \in \mathbb{Z}_{3}\right\}$ be the set of expressions $a+b x$ where a, b are elements of \mathbb{Z}_{3} and x is a symbol (similar to $i=\sqrt{-1}$ in $\left.\mathbb{C}\right)$ which satisfies $x^{2}=-1 \equiv 2(\bmod 3)$. The addition and multiplication in R is similar to that in the complex numbers.
(a) How many elements does the ring R have? List them.
(b) Show that this ring is a field.
2. Show each number is algebraic over \mathbb{Q} by finding its minimal polynomial.
(a) $\sqrt{5}-1$
(b) $\sqrt[3]{3+i \sqrt{2}}$
(c) $\sqrt{3}+\sqrt{5}$
3. Consider $\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$. Show this is a field with 8 elements. Write the multiplication table for the non-zero elements of this field.
4. (a) Let $\alpha=\sqrt[4]{5}$ and $\beta=\sqrt[4]{5} \cdot i$. Find the minimal polynomials of α and β.
(b) Find the degrees of the extensions $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ over \mathbb{Q}.
(c) Show that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are isomorphic fields.
(d) Show that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are not the same field.
5. Find a basis for each field extension, and compute the degree of the extension.
(a) $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}
(b) $\mathbb{Q}(\sqrt{3})$ over $\mathbb{Q}(\sqrt{27})$
(c) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q}
6. (a) Decide whether each given number is algebraic over \mathbb{Q}, and explain your answer. For the ones which are algebraic, find their minimal polynomials.

$$
\begin{aligned}
& \alpha_{1}=\sqrt{3}, \quad \alpha_{2}=\sqrt{1+\sqrt{5^{2}-4^{2}}}, \quad \alpha_{3}=\pi+1 \\
& \alpha_{4}=\sqrt[3]{5+\sqrt{2}}, \quad \alpha_{5}=\sqrt{\pi}, \alpha_{6}=\sqrt{5}
\end{aligned}
$$

(b) Compute the extension degree $\left[\mathbb{Q}\left(\alpha_{i}\right): \mathbb{Q}\right]$ for each α_{i} appearing above.
(c) Determine which are algebraic:

$$
\alpha_{1} \alpha_{2}, \quad \alpha_{2} / \alpha_{4}, \quad \alpha_{3}-\alpha_{5}^{2}, \quad \alpha_{5}^{100}, \quad \sqrt[101]{\alpha_{6}}
$$

(d) Show that $\mathbb{Q}\left(\alpha_{1}+\alpha_{6}\right)=\mathbb{Q}\left(\alpha_{1}, \alpha_{6}\right)$.

