Homework 8

- 1. Determine which of the following subsets are ideals. For example, $\mathbb{Q} \subset \mathbb{R}$ means: is \mathbb{Q} an ideal in the ring \mathbb{R} ? Justify your answer in each case.
 - (a) $2\mathbb{Z} \subset \mathbb{Z}$
 - (b) $\mathbb{Q} \subset \mathbb{R}$
 - (c) $\{a + b\sqrt{-5} : a + b \equiv 0 \pmod{6}\} \subset \mathbb{Z}[\sqrt{-5}]$
 - (d) $\mathbb{R} \subset \mathbb{R}[x]$
 - (e) $\{f(x,y) \in \mathbb{R}[x,y] : f(4,5) = 0\}$
- 2. Consider the ideal in the ring $\mathbb{Z}[\sqrt{-5}]$ given by

$$I = (3, 1 + \sqrt{-5}) = \{3x + (1 + \sqrt{-5})y : x, y \in \mathbb{Z}[\sqrt{-5}]\}$$

Suppose I is principal and generated by some $a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$, i.e. $I = (a + b\sqrt{-5})$.

- (a) Since $3 \in I$, we have $3 = (a + b\sqrt{-5})(c + d\sqrt{-5})$ for some $c, d \in \mathbb{Z}$. Find all possibilities for $a + b\sqrt{-5}$ based on this relation.
- (b) Do the same as in (a) but using $1 + \sqrt{-5} \in I$ instead of $3 \in I$.
- (c) Using your results in (a) and (b) show that I cannot be a principal ideal.
- 3. Let R be a commutative ring. Consider the ring of polynomials R[x]. For an element $a \in R$ define the *evaluation* at a to be the map

$$\phi_a : R[x] \longrightarrow R, \qquad \phi_a(f(x)) = f(a)$$

given by plugging a into a polynomial $f(x) \in R[x]$ to get an element $f(a) \in R$.

- (a) Show that ϕ_a is a homomorphism of rings.
- (b) Apply the 1st Isomorphism Theorem of rings to this homomorphism.
- 4. For two ideals $I, J \subset R$ in a commutative ring R, define the sum

$$I + J = \{a + b : a \in I, b \in J\}.$$

- (a) Show that I + J is an ideal in R.
- (b) Show that $I \subset I + J$ and $J \subset I + J$.

Given $a_1, \ldots, a_n \in R$ one often writes $(a_1, \ldots, a_n) \subset R$ for the "ideal generated by a_1, \ldots, a_n ". It is by definition the sum of principal ideals $(a_1) + (a_2) + \ldots + (a_n)$.

- 5. (a) Given ideals $I, J \subset \mathbb{R}[x, y]$ show that the varieties satisfy $V(I \cap J) = V(I) \cup V(J)$. (b) Let $I = (x^2 - y - \frac{1}{2})$ and $J = (x^2 + y^2 - 1)$. Draw the varieties V(I + J) and $V(I \cap J)$.
- 6. How many prime ideals does the ring \mathbb{Z}_{30} contain?