Homework 8

1. Determine which of the following are rings, with the usual operations of addition and multiplication. If it is a ring you do not need to write out all the axioms, but if it is not a ring, explain why. If the set is a ring, is it a field? If not, explain why.
(a) $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$
(b) $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$, where $i=\sqrt{-1}$, so that $i^{2}=-1$
(c) The set of following matrices with entries in the ring \mathbb{Z}_{2} :

$$
\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\}
$$

(d) The set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Addition and multiplication is defined pointwise. That is, for two such functions f, g, we have $f+g$ and $f g$ defined by $(f+g)(x)=f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$ for $x \in \mathbb{R}$.
(a) It's a ring, in fact a subbing of \mathbb{C} :

$$
\begin{aligned}
& 0=0+0 \sqrt{2}, 1=1+0 \sqrt{2} \in \mathbb{Q}(\sqrt{2}) \\
& a+b \sqrt{2}, c+d \sqrt{2} \in C_{k}(\sqrt{2}) \Rightarrow(a+b \sqrt{2})-(c+d \sqrt{2})=(a-c)+(b-d) \sqrt{2} \\
& \in \mathbb{Q}(\sqrt{2})
\end{aligned}
$$

and $(a+b \sqrt{2})(c+d \sqrt{z})=(a c+2 b d)+(a d+b c) \sqrt{2} \in a(\sqrt{2})$
(Here $a, b, c, d \in \mathbb{Q}$).
If's also a field: $(a+b \sqrt{2})^{-1}=\left(\frac{a}{a^{2}-2 b^{2}}\right)+\left(\frac{-b}{a^{2}-2 b^{2}}\right) \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ Note: $a^{2}-2 b^{2} \neq 0$ if $(a, b) \neq(0,0)$ since a, b we rational.
(b) This is also a subring of ब. Not a field: take $2 \in \mathbb{Z}[i]$. Then $2^{-1}: \frac{1}{2} \notin \mathbb{Z}[i]$.

$$
\begin{array}{ll}
\text { (c) } R=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\} \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=0^{\prime \prime} \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=" 11 \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
\end{array}
$$

Closed under all operations. It's a ring.

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Thus all nonzero elements have multi. inverses.

$$
\Rightarrow \text { it's a field. }
$$

(d) It's a ring.

Note " 0 " $=\underset{\text { constant }}{\text { function }} f(x)=0, ~ " 1 "=\begin{gathered}\text { constant } \\ \text { function }\end{gathered} f(x)=1$
Ta's not a field.
For example consider $f(x)=x$.
Suppose $g(x)$ has $f(x) g(x)=1$.
Then necesswily $g(x)=\frac{1}{x}$ for all $x \neq 0$. But cannot extend g to a continuous function at $x=0$.
2. For each ring R given, determine the set of units R^{\times}.
(a) The integers \mathbb{Z}
(b) The ring $\mathrm{M}_{2}(\mathbb{Z})$, the 2×2 matrices with integer entries
(c) Each of the rings in problem \#1
(a) $a b=1$ in $\mathbb{Z} \Rightarrow a, b= \pm 1$.

Thus $\mathbb{Z}^{x}=\{1,-1\}$.
(b) $M_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Z}\right\}$

Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(z)$ has also $A^{-1} \in M_{2}(\not \not z)$.
Then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}=\frac{1}{a d-b c} \in \mathbb{Z}$.
Thus $a d-b c= \pm 1$.
Conversely, if $a d-b c= \pm 1$ then $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \in M_{2}(\mathbb{Z})$.
Thus $\quad M_{2}(\mathbb{Z})^{x}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): \quad a d-b c= \pm 1\right\}$.
(Ia) $\mathbb{Q}(\sqrt{2})$ is a field so $\mathbb{Q}(\sqrt{2})^{x}=\mathbb{Q}(\sqrt{2})-\{0\}$.
(1b) Suppose $(a+b i)(c+d i)=1$ where $a, b, c, d \in \mathbb{t}$.
Take norms squared: $\quad\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=1$.

$$
\Rightarrow(a, b)=(1,0),(0,1),(-1,0) \text { os }(0,-1) \text {. }
$$

Thus $1,-1, i,-i$ we the units:

$$
\mathbb{Z}[i]^{x}=\{1,-1, i,-i\}
$$

(1c) This is a field, and the units are all nonzero elements:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

(1d) The inverse in this ring of a function $f(x)$ should be $\frac{1}{f(x)}$. This is a well-defined continuous function if and only if $f(x)$ is never zero.

Thus $R^{x}=\{f(x): f(x) \neq 0$ for all $x \in \mathbb{R}\}$

