Homework 6

- 1. Determine whether each map defined is a homomorphism or not. If it is a homomorphism, prove it, and also determine whether it is an isomorphism.
 - (a) The maps $\phi_1, \phi_2, \phi_3 : (\mathbb{R}^{\times}, \times) \to \mathrm{GL}_2(\mathbb{R})$ given by the following, for each $a \in \mathbb{R}^{\times}$:

$$\phi_1(a) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}, \qquad \phi_2(a) = \begin{pmatrix} 2a & 0 \\ 0 & a \end{pmatrix}, \qquad \phi_3(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

- (b) The map $\phi: (\mathbb{Z}_n, +) \to (\mathbb{C}^{\times}, \times)$ given by $\phi(k \pmod{n}) = e^{2\pi i k/n}$. (Here $i = \sqrt{-1}$.)
- (c) The map $\phi : \mathbb{C}^{\times} \to \mathrm{GL}_2(\mathbb{R})$ given by sending $z = a + bi \in \mathbb{C}^{\times}$ to:

$$\phi(a+bi) = \left(\begin{array}{cc} a & b \\ -b & a \end{array}\right)$$

(a) Let
$$a, b \in \mathbb{R}^{k}$$
. $\varphi_{1}(ab) = \begin{pmatrix} 1 & 0 \\ 0 & ab \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} = \varphi_{1}(a) \varphi_{1}(b)$
so φ_{1} is a homomorphism. φ_{1} is not onto $(e.g. \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \neq \varphi_{1}(a)$
for any $a \in \mathbb{R}^{k}$
so it is not an isomorphism.

$$\begin{aligned} \varphi_2(ab) &= \begin{pmatrix} 2ab & 0 \\ 0 & ab \end{pmatrix} \neq \begin{pmatrix} 4ab & 0 \\ 0 & ab \end{pmatrix} = \begin{pmatrix} 2a & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 2b & 0 \\ 0 & b \end{pmatrix} = \varphi_2(a)\varphi_2(b) \\ & \Rightarrow \varphi_2 \text{ net } a \text{ honom }, \\ \varphi_3(1) &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varphi_3 \text{ should map} \\ \text{identity to identity} \end{pmatrix} \Rightarrow \varphi_3 \text{ not hom}. \end{aligned}$$

(b) The map
$$\varphi$$
 is a homomorphism: for $k, l \in \mathbb{Z}_n$
 $\varphi(k+l) = e^{2\pi i (k+l) h} = e^{2\pi i k h} e^{2\pi i l h} = \varphi(k) \varphi(l).$
Not an isomorphism: \mathbb{C}^{\times} is infinite, \mathbb{Z}_n finite.

(c) It's a homomorphism: let
$$a+ib = z$$
, $c+id = z' \in \mathbb{C}^{\times}$.
Then $\phi(zz') = \phi((ac-bd)+i(ad+bc)) = (ac-bd ad+bc)$
 $= (a b)(c d) = \phi(z)\phi(z')$. Not isom. $(ad-bc ac-bd)$
 $= (a b)(-d c) = \phi(z)\phi(z')$. Not isom. $(ad-bc ac-bd) = (ad-bc ac-bd)$

2. A while back on HW 1 you showed that the set \mathbb{Z} equipped with the binary operation a * b = a + b + 1 defines a group. Show that this group $(\mathbb{Z}, *)$ is isomorphic to the usual group of integers with addition, $(\mathbb{Z}, +)$.

Gloul: find an isomorphism
$$\phi: (\mathbb{Z}, *) \rightarrow (\mathbb{Z}, +)$$
.
Recall in $(\mathbb{Z}, *)$ the identity is -1 and inverse of
a is given by -a-2.
The isomorphism ϕ must send identity to identity so
we are forced to have $\phi(-1) = 0$.
Next, $(\mathbb{Z}, *)$ is generated by 0:
 $0 + 0 = 0 + 0 + 1 = 1$, $0 + 0 + 0 = 2$, etc
and $0^{-1} = -0 - 2 = -2$, $0^{-2} = -3$, etc.
So we should probably map 0 to a generator of $(\mathbb{Z}, +)$,
say 1 (although -1 is also fine): $\phi(0) = 1$.
This determines ϕ because:
 $\phi(1) = \phi(0 + 0) = \phi(0) + \phi(0) = 1 + 1 = 2$
 $\phi(2) = \phi(0 + 1) = \phi(0) + \phi(1) = 1 + 2 = 3$, etc.
We get the formula $\phi(k) = k + 1$.
This is an isomorphism (into inverse is $\phi^{-1}(k) = k - 1$).

Homework 6

3. Let $\phi: G \to G'$ be a group homomorphism. Define

$$\operatorname{im}(\phi) = \{a' \in G' : a' = \phi(a) \text{ for some } a \in G\} \subset G'$$

This set is called the *image* of ϕ . Sometimes people write $\operatorname{im}(\phi) = \phi(G)$.

- (a) Show that $im(\phi)$ is a subgroup of G'.
- (b) Prove or provide a counterexample: $im(\phi)$ is a normal subgroup of G'.

(6) Let
$$a' = \phi(a)$$
, $b' = \phi(b) \in im(\phi)$
Then $a'b' = \phi(a)\phi(b) = \phi(ab) \in im(\phi)$
Also, $e' = \phi(e) \in im(\phi)$
and for $a' = \phi(a) \in im(\phi)$ we have $(a')^{-1} = \phi(a)^{-1} = \phi(a') \in im(\phi)$
Thus $im(\phi)$ is a subgroup of G'_{1} .

(b) im (b) need not be a normal subgroup of Gí.
Take any group G with a non-normal subgroup
$$H \subseteq G_1$$
.
Define $\varphi: H \rightarrow G$ by inclusion: $\varphi(a) = a$ for $a \in H$.
Then im (φ) = $H \subseteq G$ is not normal.

- 4. Let G and G' be isomorphic groups. Prove the following statements.
 - (a) If G is abelian, then G' is abelian.
 - (b) If G is cyclic, then G' is cyclic.
 - (c) Show that \mathbb{Q} is not isomorphic to \mathbb{Z} .

(a) Let
$$\phi: G \rightarrow G'$$
 and $\phi': G' \rightarrow G$ be isomorphisms.
Let $a', b' \in G'$. Then
 $\phi'(a'b') = \phi'(a')\phi'(b') \stackrel{\checkmark}{=} \phi'(b')\phi'(a') = \phi'(b'a')$
 $\phi'(a'b') = \phi'(b'a') \implies a'b' = b'a' (since \phi' is 1-1).$
Thus G' is abelian.

(b) Let a generate
$$G_{1}$$
, i.e. $G_{1} = \langle a \rangle = \{a^{k} : k \in \mathbb{Z}\}$.
Then $\phi(a) \in G'$. ϕ is onto so for any $a' \in G'$, there is $b \in G$
such that $\phi(b) = a'$. But $b \in G \Rightarrow b = a^{k}$ for some $k \in \mathbb{Z}$.
So $a' = \phi(a^{k}) = \phi(a)^{k}$. Thus $G' = \{\phi(a)^{k} : k \in \mathbb{Z}\}$, i.e. G' is cyclic.

(c) Suppose
$$\varphi: \mathbb{R} \to \mathbb{Z}$$
 were an isomorphism.
Then $1 \in \mathbb{Z}$ is $1 = \varphi(r)$ for some $r \in \mathbb{R}$.
But then $\varphi(r) = \varphi(\frac{r}{2} + \frac{r}{2}) = \varphi(\frac{r}{2}) + \varphi(\frac{r}{2}) = \frac{r}{2} \notin \mathbb{Z}$,
Contradict: on,

- 5. (a) Find two non-isomorphic groups of order 4.
 - (b) Show that A_4 and $\mathbb{Z}_2 \times S_3$, although both of order 12, are not isomorphic.
 - (c) Show that $S_3 \times \mathbb{Z}_4$ and S_4 , although both of order 24, are not isomorphic.