Homework 4

- 1. List the left and right cosets of the subgroups in the following list.
 - (a) The subgroup $\langle 5 \rangle$, generated by 5 (mod 20), inside (\mathbb{Z}_{20} , +).
 - (b) The subgroup $4\mathbb{Z} = \{4k : k \in \mathbb{Z}\}$ inside the group $(\mathbb{Z}, +)$.
 - (c) The subgroup A_3 inside the symmetric group S_3 .
 - (d) The subgroup $H = \{e, (12)(34), (13)(24), (14)(23)\}$ in the group A_4 .
 - (e) The subgroup $H = \{e, (123), (132)\}$ in the group A_4 .

For which of these examples does it happen that every right coset is a left coset, and every left coset is a right coset?

- 2. Let G be a group and $H \subset G$ a subgroup with index 2, i.e. [G:H] = 2. Show that aH = Ha for all $a \in G$.
- Recall that GL₂(ℝ) is the group of real 2 × 2 matrices with non-zero determinant, and SL₂(ℝ) is the subgroup of those matrices with determinant 1. Describe the right cosets of SL₂(ℝ) in GL₂(ℝ), and find the index of this subgroup.
- 4. Use Euler's Theorem or Fermat's Little Theorem to help compute the following.
 - (a) $7^{26} \pmod{15}$
 - (b) The last digit of 97^{123} (Hint: pass to integers mod 10)
 - (c) $15^{83} \pmod{41}$
- 5. Suppose G is a finite group, and $a \in G$. Suppose n is an integer greater than 1 that divides the order of G. Show that a^n cannot generate G, i.e. $\langle a^n \rangle \neq G$.
- 6. Let G be a finite group of order pq where p and q are distinct primes. Show that if $a, b \in G$ are non-identity elements of different orders, then the only subgroup in G containing a and b is the whole group G.
- 7. Let G be a group. Given $a, b \in G$, we say a is *conjugate* to b if there exists $g \in G$ such that $a = gbg^{-1}$. Define \sim as follows: $a \sim b$ if and only if a is conjugate to b.
 - (a) Show that \sim is an equivalence relation on G.
 - (b) What are the equivalence classes of this relation if G is abelian?
 - (c) Compute the equivalence classes of this relation for the groups S_3 and A_4 .
- 8. Directly write down a bijection (where it sends all elements) from \mathbb{Z}_{15}^{\times} to the Cartesian product $\mathbb{Z}_{3}^{\times} \times \mathbb{Z}_{5}^{\times}$. Is there a similar bijection from \mathbb{Z}_{24}^{\times} to $\mathbb{Z}_{4}^{\times} \times \mathbb{Z}_{6}^{\times}$? Explain.