Homework 4

1. List the left and right cosets of the subgroups in the following list.
(a) The subgroup $\langle 5\rangle$, generated by $5(\bmod 20)$, inside $\left(\mathbb{Z}_{20},+\right)$.
(b) The subgroup $4 \mathbb{Z}=\{4 k: k \in \mathbb{Z}\}$ inside the group $(\mathbb{Z},+)$.
(c) The subgroup A_{3} inside the symmetric group S_{3}.
(d) The subgroup $H=\{e,(12)(34),(13)(24),(14)(23)\}$ in the group A_{4}.
(e) The subgroup $H=\{e,(123),(132)\}$ in the group A_{4}.

For which of these examples does it happen that every right coset is a left coset, and every left coset is a right coset?
2. Let G be a group and $H \subset G$ a subgroup with index 2, i.e. $[G: H]=2$. Show that $a H=H a$ for all $a \in G$.
3. Recall that $\mathrm{GL}_{2}(\mathbb{R})$ is the group of real 2×2 matrices with non-zero determinant, and $\mathrm{SL}_{2}(\mathbb{R})$ is the subgroup of those matrices with determinant 1 . Describe the right cosets of $\mathrm{SL}_{2}(\mathbb{R})$ in $\mathrm{GL}_{2}(\mathbb{R})$, and find the index of this subgroup.
4. Use Euler's Theorem or Fermat's Little Theorem to help compute the following.
(a) $7^{26}(\bmod 15)$
(b) The last digit of 97^{123} (Hint: pass to integers mod 10)
(c) $15^{83}(\bmod 41)$
5. Suppose G is a finite group, and $a \in G$. Suppose n is an integer greater than 1 that divides the order of G. Show that a^{n} cannot generate G, i.e. $\left\langle a^{n}\right\rangle \neq G$.
6. Let G be a finite group of order $p q$ where p and q are distinct primes. Show that if $a, b \in G$ are non-identity elements of different orders, then the only subgroup in G containing a and b is the whole group G.
7. Let G be a group. Given $a, b \in G$, we say a is conjugate to b if there exists $g \in G$ such that $a=g b g^{-1}$. Define \sim as follows: $a \sim b$ if and only if a is conjugate to b.
(a) Show that \sim is an equivalence relation on G.
(b) What are the equivalence classes of this relation if G is abelian?
(c) Compute the equivalence classes of this relation for the groups S_{3} and A_{4}.
8. Directly write down a bijection (where it sends all elements) from \mathbb{Z}_{15}^{\times}to the Cartesian product $\mathbb{Z}_{3}^{\times} \times \mathbb{Z}_{5}^{\times}$. Is there a similar bijection from \mathbb{Z}_{24}^{\times}to $\mathbb{Z}_{4}^{\times} \times \mathbb{Z}_{6}^{\times}$? Explain.

