Homework 4

1. List the left and right cosets of the subgroups in the following list.
(a) The subgroup $\langle 5\rangle$, generated by $5(\bmod 20)$, inside $\left(\mathbb{Z}_{20},+\right)$.
(b) The subgroup $4 \mathbb{Z}=\{4 k: k \in \mathbb{Z}\}$ inside the group $(\mathbb{Z},+)$.
(c) The subgroup A_{3} inside the symmetric group S_{3}.
(d) The subgroup $H=\{e,(12)(34),(13)(24),(14)(23)\}$ in the group A_{4}.
(e) The subgroup $H=\{e,(123),(132)\}$ in the group A_{4}.

For which of these examples does it happen that every right coset is a left coset, and every left coset is a right coset?
(a) $0+\langle 5\rangle, 1+\langle 5\rangle, 2+\langle 5\rangle, 3+\langle 5\rangle, 4+\langle 5\rangle$. $\quad \mathbb{Z}_{20}$ abelian
\Rightarrow Left cosets $=$ Right Cosets.
(b) $0+4 \mathbb{Z}, 1+4 \mathbb{Z}, 2+4 \mathbb{Z}, 3+4 \mathbb{Z}$. again Lett cosets $=$ Right corsets.
(c) Left corsets:

$$
A_{3}, \quad(12) A_{3}=\{(12),(23),(31)\} \quad A_{3}, \quad A_{3}(12)=\{(12),(23),(31)\}
$$

In this case Right corsets $=$ Lett cosets.
(d) Right cosets:

H

$$
\begin{aligned}
& H(123)=\{(123),(243),(142),(134)\} \\
& H(132)=\{(132),(234),(124),(143)\}
\end{aligned}
$$

(e) Right cosets:

$$
\begin{aligned}
& H \\
& H(12)(34)=\{(12)(34),(134),(234)\} \\
& H(13)(24)=\{(13)(24),(243),(124)\} \\
& H(14)(23)=\{(14)(23),(142),(143)\}
\end{aligned}
$$

Left cosets: same as right coset

Left corsets:
H
$(12)(34) H=\{(12)(34),(243),(143)\}$
(13)(24) $H=\{(13)(24),(142),(234)\}$
$(14)(23) H=\{(14)(23),(134),(124)\}$

In this lost case the left coset are not the same as the right coset (only common coset is H).
2. Let G be a group and $H \subset G$ a subgroup with index 2, ie. $[G: H]=2$. Show that $a H=H a$ for all $a \in G$.
$[G: H]=2=\#$ left coset $=\#$ right cosets
Let $a \in G$. Then either $a \in H$ or $a \notin H$.
If $a \in H, a H=H=H a$.
If $a \notin H, \quad a H \neq H$ and $H a \neq H$.
Left (resp. right) cosets partition G so we have

$$
\begin{aligned}
& G=H \cup a H \quad \& \quad H \cap a H=\varnothing \\
& G=H \cup H a \quad \& \quad H \cap H_{a}=\phi
\end{aligned}
$$

Thus $a H=H a=G, H$.
In conclusion, $a H=H a$ for all $a \in G$.
3. Recall that $\mathrm{GL}_{2}(\mathbb{R})$ is the group of real 2×2 matrices with non-zero determinant, and $\mathrm{SL}_{2}(\mathbb{R})$ is the subgroup of those matrices with determinant 1 . Describe the right coset of $\mathrm{SL}_{2}(\mathbb{R})$ in $\mathrm{GL}_{2}(\mathbb{R})$, and find the index of this subgroup.

Let $A \in G L_{2}(R)$. Then

$$
S L_{2}(\mathbb{R}) \cdot A=\{B \cdot A: \quad \operatorname{det}(B)=1\}
$$

Note $\operatorname{det}(B \cdot A)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(A)$
Any $C \in G L_{2}(\mathbb{R})$ with $\operatorname{det}(C)=\operatorname{det}(A)$ can be written as $B \cdot A$ as above: $C=\left(C A^{-1}\right) \cdot A \quad$ (note $\left.\operatorname{det}\left(C A^{-1}\right)=1\right)$

Thus $\quad S L_{2}(\mathbb{R}) \cdot A=\left\{C \in G L_{2}(\mathbb{R}): \quad \operatorname{det}(C)=\operatorname{det}(A)\right\}$
Thus for each $r \in \mathbb{R}^{\times}$we have a right coset

$$
\{C: \operatorname{det}(c)=r\}
$$

and this gives all right cosets.
Since $\left|\mathbb{R}^{x}\right|=\infty, \quad\left[G L_{2}(\mathbb{R}): S L_{2}(\mathbb{R})\right]=\infty$.
4. Use Euler's Theorem or Fermat's Little Theorem to help compute the following.
(a) $7^{26}(\bmod 15)$
(b) The last digit of 97^{123} (Hint: pass to integers mod 10)
(c) $15^{83}(\bmod 41)$
(a) $\quad \mathbb{Z}_{15}^{x}=\{1,2,4,7,8,11,13,14\} \quad \phi(15)=\left|\mathbb{Z}_{15}^{x}\right|=8$

Euler's Theorem: $7^{\phi(15)} \equiv 7^{8} \equiv 1(\bmod 15)$
Thus $7^{26} \equiv 7^{3 \cdot 8+2} \equiv 7^{2} \equiv 49 \equiv 4(\bmod 15)$
(b) Last digit of a number $=\bmod 10$ reduction of number

$$
\mathbb{Z}_{10}^{x}=\{1,3,7,9\} \quad \phi(10)=\left|\mathbb{Z}_{10}^{x}\right|=4
$$

Thus $\quad 97^{123} \equiv 97^{4 \cdot 30+3} \equiv 97^{3} \equiv 7^{3} \equiv 7^{2 \cdot 7}$

$$
\equiv 49 \cdot 7 \equiv(-1) \cdot 7 \equiv-7 \equiv 3(\bmod 10)
$$

(c) 41 is prime

Fermat's Theorem: $\quad 15^{41-1} \equiv 1(\bmod 41)$
Thus $15^{83} \equiv 15^{40 \cdot 2+3} \equiv 15^{3} \equiv 15^{2} \cdot 15 \equiv 225 \cdot 15$

$$
\equiv 20 \cdot 15 \equiv 300 \equiv 13(\bmod 41)
$$

5. Suppose G is a finite group, and $a \in G$. Suppose n is an integer greater than 1 that divides the order of G. Show that a^{n} cannot generate G, i.e. $\left\langle a^{n}\right\rangle \neq G$.

$$
\left\{\begin{array}{l}
a^{n} \text { generates } G \leftrightarrow \operatorname{ord}\left(a^{n}\right)=|G| \\
a^{|G|}=e \quad \text { (consequence of Lagrange's Theoreon) }
\end{array}\right.
$$

We have n divides $|G| ;$ wite $|G|=n k$. By assumption $n>1$, so $k<|G|$.
Then $a^{|a|}=a^{n k}=\left(a^{n}\right)^{k}=e$.
So $\operatorname{ord}\left(a^{n}\right) \leq k<|G| \Rightarrow a^{n} \operatorname{doesn}$ 't generate G,
6. Let G be a finite group of order $p q$ where p and q are distinct primes. Show that if $a, b \in G$ are non-identity elements of different orders, then the only subgroup in G containing a and b is the whole group G.

By Lagrange's Theorem, $\operatorname{ord}(a)=|\langle a\rangle|$ divides $|G|=p q$ and similarly for ord (b).

Since $a, b \neq e, \quad \operatorname{ard}(a), \operatorname{ord}(b) \neq 1$.
Thus $\operatorname{ard}(a), \operatorname{ord}(b) \in\{p, q, p q\}$.
If $\operatorname{ard}(a)=p q$ then $\langle a\rangle=G$ and the claim is true; similarly if ord $(b)=p q$.
So assume $\operatorname{ord}(a), \operatorname{ord}(b) \in\{p, q\}$.
Without loss of generality suppose ord $(a)=p$ and $\operatorname{ord}(b)=q \quad($ recall $\operatorname{ord}(a) \neq \operatorname{ard}(b))$.
Then if H is a subgroup containing a and b, by hagearge, p, q divide $|H|$ and $|H|$ divides $p q=|G| \Rightarrow|H|=p q$ $\Rightarrow H=G$, proving the claim.

