Homework 3

1. Let G be the group of symmetries of a square in the 2-dimensional plane.
(a) Analogous to what we did for the symmetries of an equilateral triangle, write down all symmetries of the square. What is the order of the group G ?
(b) Label the 4 vertices of the square with the numbers 1,2,3,4. Accounting for how these labels are moved around by each symmetry, write down a subgroup $H \subset S_{4}$ which corresponds to G.
(c) Is H all of S_{4} ? Is it contained in the alternating group A_{4} ?
2. Compute the following compositions of permutations.
(a) $(1345)(234)$
(b) $(143)(23)(24)$
(c) $(1354)^{100}$
3. (a) What is $\operatorname{ord}(\sigma)$ for $\sigma \in S_{n}$ equal to a cycle of length l ? Prove your claim.
(b) Recall that an arbitrary permutation $\sigma \in S_{n}$ can be written $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ where each σ_{i} is a cycle and they are all disjoint. Show that

$$
\operatorname{ord}(\sigma)=\operatorname{lcm}\left(l_{1}, \ldots, l_{k}\right)
$$

where l_{i} is the length of the cycle σ_{i}.
(c) Write down all possible orders of elements in S_{7}.
4. In lecture we saw that every cycle in S_{n} is a product of transpositions. Use this to explain how the parity of a cycle is determined by the length of the cycle. Then compute the parities of the following permutations:
(a) (14356)
(b) $(156)(234)$
(c) $(17254)(1423)(154632)$
5. Find all of the subgroups in the alternating group A_{4}, and list their orders.
6. Show that A_{10} contains an element of order 15 . Does A_{10} contain an element of order 14? Explain your answer.

