Homework 3

- 1. Let G be the group of symmetries of a square in the 2-dimensional plane.
 - (a) Analogous to what we did for the symmetries of an equilateral triangle, write down all symmetries of the square. What is the order of the group G?
 - (b) Label the 4 vertices of the square with the numbers 1, 2, 3, 4. Accounting for how these labels are moved around by each symmetry, write down a subgroup $H \subset S_4$ which corresponds to G.
 - (c) Is H all of S_4 ? Is it contained in the alternating group A_4 ?
- 2. Compute the following compositions of permutations.
 - (a) (1345)(234)
 - (b) (143)(23)(24)
 - (c) $(1354)^{100}$
- 3. (a) What is $\operatorname{ord}(\sigma)$ for $\sigma \in S_n$ equal to a cycle of length l? Prove your claim.
 - (b) Recall that an arbitrary permutation $\sigma \in S_n$ can be written $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ where each σ_i is a cycle and they are all disjoint. Show that

$$\operatorname{ord}(\sigma) = \operatorname{lcm}(l_1, \dots, l_k)$$

where l_i is the length of the cycle σ_i .

- (c) Write down all possible orders of elements in S_7 .
- 4. In lecture we saw that every cycle in S_n is a product of transpositions. Use this to explain how the parity of a cycle is determined by the length of the cycle. Then compute the parities of the following permutations:
 - (a) (14356)
 - (b) (156)(234)
 - (c) (17254)(1423)(154632)
- 5. Find all of the subgroups in the alternating group A_4 , and list their orders.
- 6. Show that A_{10} contains an element of order 15. Does A_{10} contain an element of order 14? Explain your answer.