Homework 3

- 1. Let G be the group of symmetries of a square in the 2-dimensional plane.
 - (a) Analogous to what we did for the symmetries of an equilateral triangle, write down all symmetries of the square. What is the order of the group G?
 - (b) Label the 4 vertices of the square with the numbers 1, 2, 3, 4. Accounting for how these labels are moved around by each symmetry, write down a subgroup $H \subset S_4$ which corresponds to G.
 - (c) Is H all of S_4 ? Is it contained in the alternating group A_4 ?

(b) $H = \{e, (1234), (13)(24), (1432), (12)(34), (23)(14), (13), (24)\}$ (c) H is not all of S_4 (|H| = 8 and $|S_4| = 24$). H is not contained in A_4 because (13) $\in H$ is odd.

- 2. Compute the following compositions of permutations.
 - (a) (1345)(234)
 - (b) (143)(23)(24)
 - (c) $(1354)^{100}$

$$(a) (1345)(234) = (24)(135)$$

$$2 + 3$$

$$3 + 34$$

$$4 + 2$$

$$2 + 2$$

$$1 + 1$$

$$1 + 3$$

$$3 + 4$$

$$4 - 5$$

$$5 + 5$$

$$5 + 5$$

$$\begin{pmatrix} 6 \\ (143)(23)(24) = (143)(243) \\ = (14)(23)$$

$$(c) (1354)^{2} = (1354)(1354) = (15)(34) (1354)^{3} = (1354)(15)(34) = (1453) (1354)^{4} = (1354)(1453) = e (1354)^{100} = ((1354)^{4})^{25} = e^{25} = e^{2}$$

- 3. (a) What is $\operatorname{ord}(\sigma)$ for $\sigma \in S_n$ equal to a cycle of length l? Explain.
 - (b) Recall that an arbitrary permutation $\sigma \in S_n$ can be written as $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ where each σ_i is a cycle and they are all disjoint. Show that

$$\operatorname{ord}(\sigma) = \operatorname{lcm}(l_1, \ldots, l_k)$$

where l_i is the length of the cycle σ_i .

(c) Write down all possible orders of elements in S_7 .

(a) let
$$T = (a, \dots a_k)$$
 be a cycle of length k .
Then as a function $\sigma: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$
we have
 $T(a_i) = a_2$
 $\sigma^2(a_1) = T(T(a_i)) = T(a_2) = a_3$
 $\sigma^3(a_i) = a_4$
 \vdots
 $\sigma^{k-1}(a_1) = a_k$
In particular, $T^{k-1} \neq e$. On the other hand
 $\sigma^k(a_1) = T(T^{k-1}(a_1)) = T(a_k) = a_1$ and
similarly $T^k(a_1) = a_1$ for all $i=1,\dots, k$.
Thus $T^k = e$. It follows that $ord(T) = k$.
(b) $T = T(\dots T_k)$, T_i disjoint cycles of lengths k_i
 $= lcm(k_1,\dots, k_k)$. $disjoint$ cycles of lengths k_i
 $= (T_i^{k_1})^{m_1} \cdots (T_k^{k_k})^{m_k} = T_i^{m_1} \cdots T_k^{m_k} = (T_i^{k_1})^{m_1} \cdots (T_k^{k_k})^{m_k} = e^{m_1} \cdots e^{m_k} = e^{3}$
thus $ord(T) \leq k$.

Suppose
$$\operatorname{ord}(\sigma) = N < L$$
. Then L ; does not divide
 N for some $i=1,...,K$. Suppose without loss of
generality that $i=1$.
Write $N = J_1 \cdot q + r$ where $0 < r < J_1$.
Since $\sigma_1^r \neq e$ (r is less than $\operatorname{ord}(\sigma_1) = l_1$)
there is some $f \in \{1, 2, ..., n\}$ such that
 $(\sigma_1^r)(t) \neq t$. As σ_1 for it 1 is disjoint from
 σ_1 , we have
 $\sigma_1^r(t) = \sigma_1^N(t) = \sigma_1^r(\sigma_1^{l_1}(\ldots,\sigma_1^{l_1}(t)\ldots))$
 $= \sigma_1^r(t) \neq t$.
Thus $\sigma^N \neq e$. Finally, $\sigma rol(\sigma) = L = \operatorname{lem}(J_{1,...,Jk})$.
(c) Possible orders of elements in S_{τ} : $I = \operatorname{ord}(e)$
 $\frac{2}{4}$ like (12) or (12)(34) or (12)(34)(56)
 $\frac{3}{4}$ like (1234) or (123)(456)
 $\frac{12}{4}$ like (123456) or (12)(347)
 $\frac{12}{4}$ like (1234567)

~

4. In lecture we saw that every cycle in S_n is a product of transpositions. Use this to explain how the parity of a cycle is determined by the length of the cycle.

Thus we see that the parity of
$$t$$
 is
the parity of $k-1$, or:
 $k \text{ odd } \iff \sigma \text{ even}$
 $k \text{ even } \iff \sigma \text{ odd}$

- 5. Determine whether each permutation is even or odd.
 - (a) (14356)
 - (b) (156)(234)
 - (c) (17254)(1423)(154632)