Homework 3

1. Let G be the group of symmetries of a square in the 2-dimensional plane.
(a) Analogous to what we did for the symmetries of an equilateral triangle, write down all symmetries of the square. What is the order of the group G ?
(b) Label the 4 vertices of the square with the numbers 1, 2, 3, 4. Accounting for how these labels are moved around by each symmetry, write down a subgroup $H \subset S_{4}$ which corresponds to G.
(c) Is H all of S_{4} ? Is it contained in the alternating group A_{4} ?
(a)

There are 8 symmetries so $|a|=8$.
(b)

$$
H=\{e,(1234),(13)(24),(1432),(12)(34),(23)(14),(13),(24)\}
$$

(c) H is not all of $S_{4} \quad\left(|H|=8\right.$ and $\left.\left|S_{4}\right|=24\right)$.
H is not contained in A_{4} because
$(13) \in H$ is odd.
2. Compute the following compositions of permutations.
(a) $(1345)(234)$
(b) $(143)(23)(24)$
(c) $(1354)^{100}$

$$
\begin{aligned}
& \text { (a) }(1345)(234)=(24)(135) \\
& 2 \mapsto 3 \\
& 3 \mapsto 4 \\
& 4 \mapsto 2 \\
& 2 \mapsto 2 \\
& 1 \mapsto 1 \\
& 1 \mapsto 3 \\
& 3 \mapsto 4 \\
& 4 \mapsto 5 \\
& 5 \mapsto 5 \\
& 5 \mapsto 1 \\
& (b) \quad(143)(23)(24)=(143)(243) \\
& =(14)(23) \\
& \text { (c) }(1354)^{2}=(1354)(1354)=(15)(34) \\
& (1354)^{3}=(1354)(15)(34)=(1453) \\
& (1354)^{4}=(1354)(1453)=e \\
& (1354)^{100}=\left((1354)^{4}\right)^{25}=e^{25}=e .
\end{aligned}
$$

3. (a) What is $\operatorname{ord}(\sigma)$ for $\sigma \in S_{n}$ equal to a cycle of length l ? Explain.
(b) Recall that an arbitrary permutation $\sigma \in S_{n}$ can be written as $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ where each σ_{i} is a cycle and they are all disjoint. Show that

$$
\operatorname{ord}(\sigma)=\operatorname{lcm}\left(l_{1}, \ldots, l_{k}\right)
$$

where l_{i} is the length of the cycle σ_{i}.
(c) Write down all possible orders of elements in S_{7}.
(a) Let $\sigma=\left(a, \ldots a_{l}\right)$ be a cycle of length l.

Then as a function $\sigma:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ we have

$$
\begin{aligned}
& \sigma\left(a_{1}\right)=a_{2} \\
& \sigma^{2}\left(a_{1}\right)=\sigma\left(\sigma\left(a_{1}\right)\right)=\sigma\left(a_{2}\right)=a_{3} \\
& \sigma^{3}\left(a_{1}\right)=a_{4} \\
& \vdots \\
& \sigma^{l-1}\left(a_{1}\right)=a_{l}
\end{aligned}
$$

In particular, $\sigma^{\ell-1} \neq e$. On the other hand

$$
\sigma^{l}\left(a_{1}\right)=\sigma\left(\sigma^{l-1}\left(a_{1}\right)\right)=\sigma\left(a_{l}\right)=a_{1} \text { and }
$$

similarly $\sigma^{l}\left(a_{i}\right)=a_{i}$ for all $i=1, \ldots, l$.
Thus $\sigma^{\ell}=e$. It follows that $\operatorname{ard}(\sigma)=l$.
(b) $\sigma=\sigma_{1} \cdots \sigma_{k}, \sigma_{i}$ disjoint cycles of lengths l_{i} $L=\operatorname{lcm}\left(l_{1}, \ldots, l_{k}\right)$. disjoint cycles commute

$$
\begin{aligned}
\sigma^{L} & =\left(\sigma_{1} \cdots \sigma_{k}\right)^{L}=\sigma_{1}^{L} \cdots \sigma_{k}^{L}=\sigma_{1}^{m_{1} l_{1}} \cdots \sigma_{k}^{m_{k} l_{k}} \\
& =\left(\sigma_{1}^{l_{1}}\right)^{m_{1}} \cdots\left(\sigma_{k}^{l}\right)^{m_{k}}=e^{m_{1}} \cdots e^{m_{k}}=e^{3}
\end{aligned}
$$

Thus $\operatorname{ord}(\sigma) \leq L$

Suppose $\operatorname{ord}(\sigma)=N<L$. Then l_{i} does not divide N for some $i=1, \ldots, k$. Suppose without loss of generality that $i=1$.
Write $N=l_{1} \cdot q+r$ where $0<r<l_{1}$.
Since $\sigma_{1}^{r} \neq e \quad\left(r\right.$ is less than $\left.\operatorname{ord}\left(\sigma_{1}\right)=\ell_{1}\right)$
there is some $t \in\{1,2, \ldots, n\}$ such that $\left(\sigma_{1}^{r}\right)(t) \neq t$. As σ_{i} for if 1 is disjoint from б1, we have

$$
\begin{aligned}
& \text { we have } \\
& \begin{aligned}
\sigma^{N}(t) & =\sigma_{1}^{N}(t)=\sigma_{1}^{r}(\underbrace{\sigma_{1}^{\prime}}_{q \text { times }}\left(\ldots\left(\sigma_{1}^{\prime l_{1}}(t) \cdots\right)\right. \\
& =\sigma_{1}^{r}(t) \neq t .
\end{aligned}
\end{aligned}
$$

Thus $\sigma^{N} \neq e$. Finally, ord $(\sigma)=L=\operatorname{lcm}\left(l_{1}, \ldots, l_{k}\right)$.
(c) Possible coders of elements in S_{7} : $1=\operatorname{ord}(e)$

2 like (12) or $(12)(34)$ or $(12)(34)(56)$
3 like (123) or $(123)(456)$
16 like
4 like (1234) or $(1234)(56)$
(12)(34567)

5 like (12345)
12 like
(0 like (123456) or $(12)(345) \quad(123)(4567)$
7 like (1234567)
4. In lecture we saw that every cycle in S_{n} is a product of transpositions. Use this to explain how the parity of a cycle is determined by the length of the cycle.

Let $\sigma=\left(a_{1} \ldots a_{l}\right)$ be cycle of length l.
Then

$$
\begin{array}{ll}
& \sigma=\left(a_{1} a_{l}\right)\left(a_{1} a_{l-1}\right) \cdots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right) \\
{[\text { or }} & \left.\sigma=\left(a_{3} a_{2}\right)\left(a_{4} a_{3}\right) \cdots\left(a_{k} a_{k-1}\right)\left(a_{1} a_{k}\right)\right]
\end{array}
$$

In either case, σ is a product of $l-1$ transpositions.

Thus we see that the party of α is the parity of $\ell-l$, or:
l odd $\leftrightarrow \sigma$ even
ℓ even $\Leftrightarrow \sigma$ odd.
5. Determine whether each permutation is even or odd.
(a) (14356)
(b) $(156)(234)$
(c) $(17254)(1423)(154632)$

$$
\begin{aligned}
& \text { (a) Cycle of length } 5 \\
& \text { so it is even, by \#4 } \\
& \text { (b) } \begin{array}{l}
156)\left(\begin{array}{ll}
154
\end{array}\right) \quad \text { So the product } \\
\text { length } 3 \text { length } 3 \\
\text { even even also even. } \\
\text { is an }
\end{array}
\end{aligned}
$$

(c) $(17254)(1423)(154632)$ length 5 even odd

Thus the product is even.

