Homework 2

- 1. For each equation in \mathbb{Z}_n find all solutions for $x \in \mathbb{Z}_n$ (using any method).
 - (a) $3x \equiv 10 \pmod{16}$
 - (b) $7x \equiv 9 \pmod{18}$
 - (c) $4x \equiv 5 \pmod{12}$
 - (d) $2x \equiv 6 \pmod{12}$
- 2. Find the inverse of 17 (mod 99) in the group $(\mathbb{Z}_{99}^{\times}, \times)$ using the Euclidean algorithm. Show each of the steps.
- 3. Find the orders of the following elements.
 - (a) 9 (mod 51) in the group $(\mathbb{Z}_{51}, +)$
 - (b) 3 (mod 16) in the group $(\mathbb{Z}_{16}^{\times}, \times)$
 - (c) $\sqrt{7}$ in the group $(\mathbb{R}, +)$
 - (d) $\sqrt{7}$ in the group $(\mathbb{R}^{\times}, \times)$
- 4. Find the orders of the following elements in the general linear group $\operatorname{GL}_2(\mathbb{R})$.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- 5. Let G be a finite group and $a \in G$ any element.
 - (a) Show that if $a^k = e$ then $\operatorname{ord}(a)$ divides k. (Hint: Write $k = \operatorname{ord}(a)q + r$ where $0 \le r < \operatorname{ord}(a)$ is the remainder.)
 - (b) Suppose G is abelian, and $b \in G$. Write $m = \operatorname{ord}(a)$, $n = \operatorname{ord}(b)$. Show that $\operatorname{ord}(ab)$ divides the least common multiple of m, n.
 - (c) Consider the group $G = \{e, r, b, g, o, y\}$ from Lecture 1. Compute the orders of each element in G. Show part (b) is not true for non-abelian groups, in general.
- 6. Prove or disprove the following statements.
 - (a) $(\mathbb{Q}^{\times}, \times)$ is a cyclic group.
 - (b) $(\mathbb{Z}_4^{\times}, \times)$ is a cyclic group.
 - (c) If a group has no proper non-trivial subgroups then it is cyclic.(Proper: not the whole group; non-trivial: not the trivial subgroup {e}.)
- 7. For any abelian group, show that the subset of elements of finite order is a subgroup.
- 8. Describe all of the subgroups of $(\mathbb{Z}_{48}, +)$.