Homework 2

1. For each equation in \mathbb{Z}_{n} find all solutions for $x \in \mathbb{Z}_{n}$ (using any method).
(a) $3 x \equiv 10(\bmod 16)$
(b) $7 x \equiv 9(\bmod 18)$
(c) $4 x \equiv 5(\bmod 12)$
(d) $2 x \equiv 6(\bmod 12)$
2. Find the inverse of $17(\bmod 99)$ in the group $\left(\mathbb{Z}_{99}^{\times}, \times\right)$using the Euclidean algorithm. Show each of the steps.
3. Find the orders of the following elements.
(a) $9(\bmod 51)$ in the group $\left(\mathbb{Z}_{51},+\right)$
(b) $3(\bmod 16)$ in the group $\left(\mathbb{Z}_{16}^{\times}, \times\right)$
(c) $\sqrt{7}$ in the group $(\mathbb{R},+)$
(d) $\sqrt{7}$ in the group $\left(\mathbb{R}^{\times}, \times\right)$
4. Find the orders of the following elements in the general linear group $\mathrm{GL}_{2}(\mathbb{R})$.

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

5. Let G be a finite group and $a \in G$ any element.
(a) Show that if $a^{k}=e$ then $\operatorname{ord}(a)$ divides k.
(Hint: Write $k=\operatorname{ord}(a) q+r$ where $0 \leqslant r<\operatorname{ord}(a)$ is the remainder.)
(b) Suppose G is abelian, and $b \in G$. Write $m=\operatorname{ord}(a), n=\operatorname{ord}(b)$. Show that $\operatorname{ord}(a b)$ divides the least common multiple of m, n.
(c) Consider the group $G=\{e, r, b, g, o, y\}$ from Lecture 1. Compute the orders of each element in G. Show part (b) is not true for non-abelian groups, in general.
6. Prove or disprove the following statements.
(a) $\left(\mathbb{Q}^{\times}, \times\right)$is a cyclic group.
(b) $\left(\mathbb{Z}_{4}^{\times}, \times\right)$is a cyclic group.
(c) If a group has no proper non-trivial subgroups then it is cyclic.
(Proper: not the whole group; non-trivial: not the trivial subgroup $\{e\}$.)
7. For any abelian group, show that the subset of elements of finite order is a subgroup.
8. Describe all of the subgroups of $\left(\mathbb{Z}_{48},+\right)$.
