PRACTICE PROBLEMS FOR EXAM 3

1. Let f(x, y, z) = x + 2y + z and let R be the solid $x^2 + y^2 + z^2 \le 4$, $\sqrt{3(x^2 + y^2)} \le z$. Set up an iterated integral to compute $\iiint_R f(x, y, z) dxdydz$ (a) using rectangular coordinates (x, y, z), (b) using cylindrical coordinates (r, θ, z) , and (c) using spherical coordinates (ρ, θ, φ) . Do not evaluate the integrals!

2. Find the volume of the region in space bounded by the paraboloid $x = 1 - y^2 - z^2$ and the plane x = 0.

3. The solid *E* in the first octant is obtained by removing the cylinder $x^2 + y^2 = 1$ from the sphere $x^2 + y^2 + z^2 = 4$. Set up a triple integral in cylindrical coordinates to compute the total mass of *E* if its density is given by $\rho(x, y, z) = z^2 + \sqrt{x^2 + y^2}$. Do not evaluate the integral.

4. (a) Find the volume of one of the wedges cut from the cylinder $x^2 + y^2 = a^2$ by the planes z = 0 and z = mx, m > 0. (b) Use spherical coordinates to evaluate

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} (x^2+y^2+z^2)^2 \, dz \, dy \, dx \, .$$

5. Let C be the portion of the helix $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + 4t \mathbf{k}$ between t = 0 and $t = \pi$, and let $\mathbf{F} = x \mathbf{i} + z \mathbf{k}$. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

6. Compute work done by vector field $\mathbf{F} = (-yx^2 + e^{x^2})\mathbf{i} + (xy^2 - e^{y^2})\mathbf{j}$ in moving a particle along the circle $x^2 + y^2 = 1$ once in the counterclockwise direction.

7. Let $\mathbf{F} = ye^{xy}\mathbf{i} + (xe^{xy} - z^3)\mathbf{j} + (2\sin z - 3yz^2)\mathbf{k}$. (a) Evaluate curl F. (b) Find a function f such that $\mathbf{F} = \nabla f$. (c) Find the work done by \mathbf{F} along the straight line segment from (0, 5, 0) to $(1, 0, \pi)$.

8. Find the work done by the force field $\mathbf{F}(x, y, z) = z \mathbf{i} + x \mathbf{j} + y \mathbf{k}$ in moving a particle from the point (3, 0, 0) to the point $(0, \pi/2, 3)$ (a) along a straight line and (b) along the helix $x = 3 \cos t$, y = t, $z = 3 \sin t$. Is this force field conservative? Justify your answer.

9. Let C_1 be the unit circle $x^2 + y^2 = 1$ and C_2 the concentric circle of radius two. Orient both C_1 and C_2 counterclockwise. Suppose that $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ is a vector field in plane such that

$$\int_{C_1} \mathbf{F} \cdot \mathbf{n} \, ds = 10 \quad \text{and} \quad \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 17,$$

where ${\bf n}$ is the unit normal vector in said orientation.

(a) If \mathbf{F} is continuous (together with its partial derivatives) in the plane, compute

$$\iint_D \operatorname{div} \mathbf{F} \, dA,$$

where D is the domain defined by the inequality $x^2 + y^2 \leq 1$.

(b) If **F** is continuous (together with its partial derivatives) on the annulus bounded by C_1 and C_2 , and $Q_x = P_y$ everywhere on the annulus, compute

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r}.$$

10. Find the center of mass of the thin wire of density 1 bent into the shape of cycloid $\mathbf{r}(t) = (t - \sin t) \mathbf{i} + (1 - \cos t) \mathbf{j}, \ 0 \le t \le 2\pi$.