PRACTICE PROBLEMS FOR EXAM 3

1. Let $f(x, y, z)=x+2 y+z$ and let R be the solid $x^{2}+y^{2}+z^{2} \leq 4, \sqrt{3\left(x^{2}+y^{2}\right)} \leq z$. Set up an iterated integral to compute $\iiint_{R} f(x, y, z) d x d y d z$ (a) using rectangular coordinates (x, y, z), (b) using cylindrical coordinates (r, θ, z), and (c) using spherical coordinates (ρ, θ, φ). Do not evaluate the integrals !
2. Find the volume of the region in space bounded by the paraboloid $x=1-y^{2}-z^{2}$ and the plane $x=0$.
3. The solid E in the first octant is obtained by removing the cylinder $x^{2}+y^{2}=1$ from the sphere $x^{2}+y^{2}+z^{2}=4$. Set up a triple integral in cylindrical coordinates to compute the total mass of E if its density is given by $\rho(x, y, z)=z^{2}+\sqrt{x^{2}+y^{2}}$. Do not evaluate the integral.
4. (a) Find the volume of one of the wedges cut from the cylinder $x^{2}+y^{2}=a^{2}$ by the planes $z=0$ and $z=m x, m>0$. (b) Use spherical coordinates to evaluate

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right)^{2} d z d y d x
$$

5. Let C be the portion of the helix $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+4 t \mathbf{k}$ between $t=0$ and $t=\pi$, and let $\mathbf{F}=x \mathbf{i}+z \mathbf{k}$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
6. Compute work done by vector field $\mathbf{F}=\left(-y x^{2}+e^{x^{2}}\right) \mathbf{i}+\left(x y^{2}-e^{y^{2}}\right) \mathbf{j}$ in moving a particle along the circle $x^{2}+y^{2}=1$ once in the counterclockwise direction.
7. Let $\mathbf{F}=y e^{x y} \mathbf{i}+\left(x e^{x y}-z^{3}\right) \mathbf{j}+\left(2 \sin z-3 y z^{2}\right) \mathbf{k}$. (a) Evaluate curl F. (b) Find a function f such that $\mathbf{F}=\nabla f$. (c) Find the work done by \mathbf{F} along the straight line segment from $(0,5,0)$ to $(1,0, \pi)$.
8. Find the work done by the force field $\mathbf{F}(x, y, z)=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$ in moving a particle from the point $(3,0,0)$ to the point $(0, \pi / 2,3)$ (a) along a straight line and (b) along the helix $x=3 \cos t, y=t, z=3 \sin t$. Is this force field conservative? Justify your answer.
9. Let C_{1} be the unit circle $x^{2}+y^{2}=1$ and C_{2} the concentric circle of radius two. Orient both C_{1} and C_{2} counterclockwise. Suppose that $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is a vector
field in plane such that

$$
\int_{C_{1}} \mathbf{F} \cdot \mathbf{n} d s=10 \quad \text { and } \quad \int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=17
$$

where \mathbf{n} is the unit normal vector in said orientation.
(a) If \mathbf{F} is continuous (together with its partial derivatives) in the plane, compute

$$
\iint_{D} \operatorname{div} \mathbf{F} d A
$$

where D is the domain defined by the inequality $x^{2}+y^{2} \leq 1$.
(b) If \mathbf{F} is continuous (together with its partial derivatives) on the annulus bounded by C_{1} and C_{2}, and $Q_{x}=P_{y}$ everywhere on the annulus, compute

$$
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r} .
$$

10. Find the center of mass of the thin wire of density 1 bent into the shape of cycloid $\mathbf{r}(t)=(t-\sin t) \mathbf{i}+(1-\cos t) \mathbf{j}, 0 \leq t \leq 2 \pi$.
