PRACTICE PROBLEMS FOR EXAM 2

1. Let $f(x, y)$ have continuous second partial derivatives, and let $x=s t$ and $y=e^{s t}$.
(a) Find $\partial x / \partial t$ and $\partial y / \partial t$.
(b) Find $\partial f / \partial t$ in terms of $\partial f / \partial x, \partial f / \partial y, s$ and t.
(c) Find $\partial^{2} f / \partial t^{2}$ in terms of $\partial^{2} f / \partial x^{2}, \partial^{2} f / \partial x \partial y, \partial^{2} f / \partial y^{2}, \partial f / \partial x, \partial f / \partial y, s$ and t.
2. Consider the function $f(x, y)=3 x^{2}-x y+y^{3}$.
(a) Find the rate of change of f at $(1,2)$ in the direction of $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}$.
(b) In what direction (unit vector) does f decrease at $(1,2)$ at the maximum rate? What is this maximum rate of change?
(c) In what directions is the rate of change of f at $(1,2)$ equal to zero? Your answer should be a pair of opposite unit vectors.
3. Suppose the gradient $\nabla f(2,4)$ of a function $f(x, y)$ has length equal to 5 . Is there a direction \mathbf{u} such that the directional derivative $D_{\mathbf{u}} f$ at the point $(2,4)$ is 7 ? Explain your answer.
4. Find the tangent plane to the ellipsoid $x^{2}+4 y^{2}=169-9 z^{2}$ at the point $P=(3,2,4)$.
5. Find the points on the surface (ellipsoid) $x^{2}+2 y^{2}+4 z^{2}+x y+3 y z=1$ where the tangent plane is parallel to the $x z$ plane.
6. Find all the critical points of $f(x, y)=x^{2}+y^{2} / 2+x^{2} y$ and apply the second derivative test to each of them.
7. Find the absolute maximum and minimum values of the function $f(x, y)=(x-$ $1)^{2}+(y-1)^{2}$ in the rectangular domain $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 2\}$. Justify your answer.
8. Find the maximum of $f(x, y)=x y$ restricted to the curve $(x+1)^{2}+y^{2}=1$. Give both the coordinates of the point and the value of f.
9. Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is a constant C.
10. Compute $\iint_{D}(3 x+1) d x d y$ where D is the region in the first quadrant bounded by the parabolas $y=x^{2}$ and $y=(x-1)^{2}$ and the y-axis.
11. Change the order of integration in the following iterated integral:

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} f(x, y) d x d y
$$

12. (a) Find the area of the region enclosed by the cardioid given in polar coordinates by $r=1+\cos (\theta)$. (b) Use polar coordinates to evaluate

$$
\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{1+x^{2}+y^{2}} d x d y
$$

