Practice Problems - Midterm 2

1. Which of the following subsets of \mathbb{R}^{2} are actually subspaces? Briefly explain each answer.
(a) The vectors $\left(a_{1}, a_{2}\right)$ with $a_{1} a_{2}=0$.
(b) The vectors with $a_{1}+3 a_{2}=0$.
(c) The vectors with $a_{1}^{2}+a_{2}=0$.
(d) The vectors with $a_{1}<a_{2}$.
(e) The vectors with $a_{1}+a_{2}=1$.
(f) All linear combinations of $(1,2)$ and $(-1,0)$.
(g) The vectors with a_{1}, a_{2} both integers.
2. Consider the vector space of 3×3 matrices. Write a typical matrix as

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Which of the following are subspaces?
(a) Matrices with $a_{11}+a_{22}+a_{33}=0$.
(b) Matrices A such that $A \mathbf{x}=\mathbf{0}$ has only one solution.
(c) Matrices A such that $A=A^{T}$, i.e. $a_{i j}=a_{j i}$ for all i, j.
3. In each case determine whether the given vectors are dependent or independent. Compute a basis for the subspace spanned by the vectors, and compute the dimension of this subspace.
(a) $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 6 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
4. Determine whether each statement is true or false.
(a) For any matrix A, the column space $C(A)$ is equal to the row space $R(A)$.
(b) The columns of any matrix A form a basis for $C(A)$, the column space of A.
(c) For any matrix A, the dimension of $C(A)$ is equal to the dimension of $R(A)$.
(d) If A is an invertible $n \times n$ matrix, then $C(A)=\mathbb{R}^{n}$.
5. Use the rank nullity theorem to solve each problem.
(a) Suppose the space of solutions to $A \mathbf{x}=\mathbf{0}$ is a plane in \mathbb{R}^{3}. What dimension is the column space of A ?
(b) Suppose a 110×54 matrix A has a column space with dimension 33. Compute the dimension of the space of solutions to $A \mathbf{x}=\mathbf{0}$.
6. For this problem recall the meaning of the sum of two subspaces; and also the formula that relates the dimensions of two subspaces, their intersection, and their sum.
(a) Show that $U+W$ is a subspace.
(b) Suppose there are two planes U, W in \mathbb{R}^{4} that each pass through the origin. Suppose further that $U+W=\mathbb{R}^{4}$. What is $U \cap W$, and why?
(c) Suppose that two subspaces $U, W \subset \mathbb{R}^{n}$ each of dimension 3 intersect in a line. What are the possibilities for n ?
7. Let V_{n} be the vector space of polynomials of degree at most n. Let $T: V_{n} \rightarrow V_{n-1}$ be:

$$
T(p(x))=\frac{d}{d x} p(x)
$$

That is, T takes as input a polynomial $p(x)$ of degree at most n, and outputs its derivative, which is a polynonimal of degree at most $n-1$.
(a) Show T is a linear transformation.
(b) Compute the nullspace of T.
(c) Apply the Rank Nullity Theorem for T to compute the dimension of possible outputs.
(d) Conclude: every polynomial is the derivative of another polynomial.

