## Vector operation rules

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be any vectors. The cases you can have in mind are any vectors in $n$-dimensional Euclidean space $\mathbb{R}^{n}$. We write $\mathbf{0}$ for the zero vector. We have the following rules:

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u} \\
\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0}
\end{gathered}
$$

Now let $c, d, e$ be any scalars (real numbers). We have the following rules:

$$
\begin{gathered}
c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} \\
(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u} \\
c(d \mathbf{u})=(c d) \mathbf{u}=d(c \mathbf{u}) \\
1 \mathbf{u}=\mathbf{u} \\
0 \mathbf{u}=\mathbf{0}
\end{gathered}
$$

Note in the relation $0 \mathbf{u}=\mathbf{0}$ the left hand side has the scalar 0 appearing, multiplying some vector $\mathbf{u}$, but on the right side of the equation is the zero vector $\mathbf{0}$ (in bold).

The operations of addition and scalar multiplication on vectors in $\mathbf{R}^{n}$ are defined as follows. Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. Let $c$ be a scalar, i.e. a real number. Then

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right) \\
c \mathbf{u}=\left(c u_{1}, \ldots, c u_{n}\right)
\end{gathered}
$$

Given these definitions you can directly verify all of the above rules.
Now suppose on our space of vectors we also have a dot product. This is an operation that takes two vectors $\mathbf{u}$ and $\mathbf{v}$ and produces a scalar. The rules for • are:
$\mathbf{u} \cdot \mathbf{u} \geqslant 0$, and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$

$$
\begin{gathered}
\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u} \\
(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v}) \\
\mathbf{u} \cdot(c \mathbf{v}+d \mathbf{w})=c(\mathbf{u} \cdot \mathbf{v})+d(\mathbf{u} \cdot \mathbf{w})
\end{gathered}
$$

The dot product in $\mathbb{R}^{n}$ is as follows. Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. Then:

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Given this definition you can directly verify all of the above rules.

