Homework 8

In this homework you will explore determinants and eigenvalues/eigenvectors.

Problems in Strang:

5.1: # 3, 5.1: # 6, 14, 56.2: # 2, 4

Do the following additional problems:

1. Compute the determinant of each matrix.

Г 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Γο 1 1]	0	1	0	1	
$\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$	$\left[\begin{array}{rrrr} 0 & -1 & 1 \\ 2 & 1 & 0 \end{array}\right]$	0	-1 1	1	1	
		2	1	Ο	0	
$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$			3	1	1	
		1 1	- Э	T	1	1

Determine which matrices are invertible.

- 2. Recall that det(AB) = det(A) det(B) and also $det(A^T) = det(A)$. Show the following.
 - (a) If A is invertible then $det(A^{-1}) = 1/det(A)$.
 - (b) If Q is an orthogonal matrix, then $det(Q) = \pm 1$.
 - (c) An important collection of matrices, in math and physics, is the "special linear group":

 $SL(n, \mathbb{R}) = \{A \text{ an } n \times n \text{ real matrix} : \det(A) = 1\}$

Show that if A is in $SL(n, \mathbb{R})$ then so is the inverse A^{-1} . Show that if A and B are in $SL(n, \mathbb{R})$, then so is the product AB.

3. Find the eigenvalues and eigenvectors of the following matrices.

$\left[\begin{array}{cc}3&5\\1&3\end{array}\right]$	$\left[\begin{array}{c}1\\0\\1\end{array}\right]$	1 1	$\begin{array}{c} 1 \\ 0 \end{array}$]
	1	0	1	

Using the information you've found, diagonalize each matrix. In other words, write each matrix A in the form $X\Lambda X^{-1}$. Compute the determinants of the matrices in two different ways: directly, and by using the expression $X\Lambda X^{-1}$.