## Homework 8

In this homework you will explore determinants and eigenvalues/eigenvectors.

## Problems in Strang:

$\S 5.1: \# 3, \quad \S 6.1: \# 6,14, \quad \S 6.2: \# 2,4$

## Do the following additional problems:

1. Compute the determinant of each matrix.

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{rrr}
0 & -1 & 1 \\
2 & 1 & 0 \\
1 & 3 & 1
\end{array}\right] \quad\left[\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
0 & -1 & 1 & 1 \\
2 & 1 & 0 & 0 \\
1 & 3 & 1 & 1
\end{array}\right]
$$

Determine which matrices are invertible.
2. Recall that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and also $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$. Show the following.
(a) If $A$ is invertible then $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.
(b) If $Q$ is an orthogonal matrix, then $\operatorname{det}(Q)= \pm 1$.
(c) An important collection of matrices, in math and physics, is the "special linear group":

$$
S L(n, \mathbb{R})=\{A \text { an } n \times n \text { real matrix }: \operatorname{det}(A)=1\}
$$

Show that if $A$ is in $S L(n, \mathbb{R})$ then so is the inverse $A^{-1}$. Show that if $A$ and $B$ are in $S L(n, \mathbb{R})$, then so is the product $A B$.
3. Find the eigenvalues and eigenvectors of the following matrices.

$$
\left[\begin{array}{ll}
3 & 5 \\
1 & 3
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Using the information you've found, diagonalize each matrix. In other words, write each matrix $A$ in the form $X \Lambda X^{-1}$. Compute the determinants of the matrices in two different ways: directly, and by using the expression $X \Lambda X^{-1}$.

