Homework 7

In this homework you will study projections and related problems.

Do the following problems:

- A. Consider the plane in \mathbb{R}^3 spanned by (1, -1, 1) and (-2, 1, 1). Find the 3×3 matrix P which projects vectors in \mathbb{R}^3 onto this plane. Using P, project the vector (1, 0, 0) onto the plane.
- B. Let A be a matrix with independent columns, and $P = A(A^T A)^{-1} A^T$ the associated projection matrix which projects to the column space of A.
 - (a) Show that $P^2 = P$.
 - (b) Show that $P^T = P$.
 - (c) Show the matrix I P also satisfies (a), (b): $(I P)^2 = I P$ and $(I P)^T = I P$.
 - (d) Give any vectors \mathbf{x} , \mathbf{y} show that $(I P)\mathbf{x}$ is orthogonal to $P\mathbf{y}$.

Commentary: For these computations, use the general properties $(BC)^T = C^T B^T$ and $(B^{-1})^T = (B^T)^{-1}$ and $(B+C)^T = B^T + C^T$, which you should convince yourself are true.

Any square matrix P satisfying $P^2 = P$ and $P^T = P$ is in fact the projection matrix onto some subspace! The subspace that P projects onto is simply C(P), the column space of P. (Which happens to agree with C(A), if P is first defined as $A(A^TA)^{-1}A^T$.)

Part (c) shows I - P is a projection matrix. Part (d) shows that it projects onto a subspace of the orthogonal complement of C(P). In fact, I - P projects onto the whole of $C(P)^{\perp}$, not just a subspace.

- C. Use (A) and (B) to compute the following: project (0, 1, 0) onto the line which is orthogonal to the plane spanned by (1, -1, 1) and (-2, 1, 1).
- D. (Least squares problem) Let (x, y) = (0, 1), (1, 0), (-1, 1), (0, 0) be four given points in \mathbb{R}^2 . In this problem we find the parabola $y = ax^2 + bx + c$ that best approximates these points.
 - (a) Plug the four points into $y = ax^2 + bx + c$ to obtain four equations, with a, b, c unknowns.
 - (b) Letting **x** be the vector (a, b, c), write your equations of (a) in the form $A\mathbf{x} = \mathbf{b}$.
 - (c) Find the least squares solution: to do this, solve $A^T A \mathbf{x} = A^T \mathbf{b}$.
 - (d) Plot the points and the parabola in the plane.
- E. The vectors $\mathbf{v}_1 = (1, 0, 1, 0)$, $\mathbf{v}_2 = (0, 1, 1, 0)$, $\mathbf{v}_3 = (0, 0, -1, 1)$ span a 3-dimensional subspace W in \mathbf{R}^4 . Using the Gram–Schmidt method, find an orthonormal basis of W.