Homework 7

In this homework you will study projections and related problems.

Do the following problems:

A. Consider the plane in \mathbb{R}^{3} spanned by $(1,-1,1)$ and $(-2,1,1)$. Find the 3×3 matrix P which projects vectors in \mathbb{R}^{3} onto this plane. Using P, project the vector $(1,0,0)$ onto the plane.
B. Let A be a matrix with independent columns, and $P=A\left(A^{T} A\right)^{-1} A^{T}$ the associated projection matrix which projects to the column space of A.
(a) Show that $P^{2}=P$.
(b) Show that $P^{T}=P$.
(c) Show the matrix $I-P$ also satisfies (a), (b): $(I-P)^{2}=I-P$ and $(I-P)^{T}=I-P$.
(d) Give any vectors \mathbf{x}, \mathbf{y} show that $(I-P) \mathbf{x}$ is orthogonal to $P \mathbf{y}$.

Commentary: For these computations, use the general properties $(B C)^{T}=C^{T} B^{T}$ and $\left(B^{-1}\right)^{T}=\left(B^{T}\right)^{-1}$ and $(B+C)^{T}=B^{T}+C^{T}$, which you should convince yourself are true.

Any square matrix P satisfying $P^{2}=P$ and $P^{T}=P$ is in fact the projection matrix onto some subspace! The subspace that P projects onto is simply $C(P)$, the column space of P. (Which happens to agree with $C(A)$, if P is first defined as $A\left(A^{T} A\right)^{-1} A^{T}$.)

Part (c) shows $I-P$ is a projection matrix. Part (d) shows that it projects onto a subspace of the orthogonal complement of $C(P)$. In fact, $I-P$ projects onto the whole of $C(P)^{\perp}$, not just a subspace.
C. Use (A) and (B) to compute the following: project $(0,1,0)$ onto the line which is orthogonal to the plane spanned by $(1,-1,1)$ and $(-2,1,1)$.
D. (Least squares problem) Let $(x, y)=(0,1),(1,0),(-1,1),(0,0)$ be four given points in \mathbf{R}^{2}. In this problem we find the parabola $y=a x^{2}+b x+c$ that best approximates these points.
(a) Plug the four points into $y=a x^{2}+b x+c$ to obtain four equations, with a, b, c unknowns.
(b) Letting \mathbf{x} be the vector (a, b, c), write your equations of (a) in the form $A \mathbf{x}=\mathbf{b}$.
(c) Find the least squares solution: to do this, solve $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
(d) Plot the points and the parabola in the plane.
E. The vectors $\mathbf{v}_{1}=(1,0,1,0), \mathbf{v}_{2}=(0,1,1,0), \mathbf{v}_{3}=(0,0,-1,1)$ span a 3 -dimensional subspace W in \mathbf{R}^{4}. Using the Gram-Schmidt method, find an orthonormal basis of W.

