Homework 6

In this homework you will continue studying aspects of the Rank-Nullity Theorem.

Do the following problems:

A. Consider the following vectors in \mathbb{R}^4 :

[1]		[1]		$\begin{bmatrix} 0 \end{bmatrix}$		[1]
0		1		1		0
2	,	1	,	2	,	1
		1		L 1		

Let W be the subspace of \mathbb{R}^4 that is spanned by these vectors. Find a basis for W and compute the dimension of W.

B. Let A be an $m \times n$ matrix. Recall that the nullspace of A, written N(A), is the subspace of \mathbb{R}^n which consists of all solutions **x** to the equation $A\mathbf{x} = \mathbf{0}$. Thus dim N(A) is the dimension of the space of solutions to $A\mathbf{x} = \mathbf{0}$. Recall also that the column space of A, written C(A), is the subspace of \mathbb{R}^m spanned by the columns in A. Suppose that

$$C(A) = \mathbb{R}^m$$

i.e. the column space is "as large as possible". Show that under this assumption, the Rank-Nullity Theorem implies that the dimension of the space of solutions to $A\mathbf{x} = \mathbf{0}$ is equal to the "expected dimension" that we defined earlier in the course.¹

- C. Suppose A is an $m \times n$ matrix. Define a function $T : \mathbb{R}^n \to \mathbb{R}^m$ by sending any vector \mathbf{v} in \mathbb{R}^n to the vector $T(\mathbf{v}) = A\mathbf{v}$ in \mathbb{R}^m . Show that T is a linear transformation. (Recall from the notes: you must check that T satisfies two properties.)
- D. Recall that the sum of two vector spaces $U, W \subset \mathbb{R}^n$ is defined to be

$$U + W = \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \text{ is in } U, \mathbf{w} \text{ is in } W\}$$

Show that this is a subspace of \mathbb{R}^n . (Verify the properties of being a subspace!)

- E. Let V and W be subspaces of \mathbb{R}^n .
 - (i) If n = 4, dim V = 2 and dim W = 2, what are the possibilities for dim $(V \cap W)$?
 - (ii) If n = 7, dim V = 4 and dim W = 4, what are the possibilities for dim $(V \cap W)$?

¹The condition $C(A) = \mathbb{R}^m$ is in fact very "common": for a random matrix A, it will hold.

- F. In each case, determine whether the assignment $T: V \to W$ described is a linear transformation. In doing so, you should either verify that the two properties of being a linear transformation hold, or that they fail in some way.
 - (i) $T : \mathbb{R} \to \mathbb{R}$ given by $T(x) = x^2$ for any real number x.
 - (ii) $T: \mathbb{R} \to \mathbb{R}$ given by T(x) = 4x for any real number x.
 - (iii) $T: \mathbb{R} \to \mathbb{R}^2$ given T(x) = (1, 5x 1) for any real number x.
 - (iv) $T: \mathbb{R}^3 \to \mathbb{R}$ sends a vector to its first entry.