Homework 5

In this homework you will explore the concepts of spanning, independence, and basis.

Problems in Strang:

3.4: # 1, 2, 8, 11, 16, 18, 20

And the following problems:

A. Consider the following matrix, for a fixed real number θ :

 $A_{\theta} = \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right]$

As discussed in lecture, this matrix acts on vectors by rotating them by angle θ in the CCW direction. The fact that rotation is represented by a matrix has powerful consequences.

- (i) For two different angles θ and ϕ , compute the product matrix $A_{\phi}A_{\theta}$. Argue geometrically that $A_{\phi}A_{\theta}$ should be the same matrix as $A_{\theta+\phi}$. Use this to derive formulas for $\cos(\theta+\phi)$ and $\sin(\theta+\phi)$. Takeaway: linear algebra recovers trigonometric identities!
- (ii) Apply the same strategy to compute formulas for $\cos(3\theta)$ and $\sin(3\theta)$ for any given angle θ . (You will multiply three matrices this time.)
- B. Suppose A is an $n \times n$ invertible matrix. Show that if $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is a basis of \mathbb{R}^n , then the set of vectors $A\mathbf{v}_1, \ldots, A\mathbf{v}_n$ is also a basis of \mathbb{R}^n .
- C. Let V be the vector space consisting of polynomials of degree at most n, which we considered in class. Show that the set of polynomials $1, x, x^2, \ldots, x^n$ is a basis of V.