Homework 5

In this homework you will explore the concepts of spanning, independence, and basis.

Problems in Strang:

$\S 3.4: \# 1,2,8,11,16,18,20$

And the following problems:

A. Consider the following matrix, for a fixed real number θ :

$$
A_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

As discussed in lecture, this matrix acts on vectors by rotating them by angle θ in the CCW direction. The fact that rotation is represented by a matrix has powerful consequences.
(i) For two different angles θ and ϕ, compute the product matrix $A_{\phi} A_{\theta}$. Argue geometrically that $A_{\phi} A_{\theta}$ should be the same matrix as $A_{\theta+\phi}$. Use this to derive formulas for $\cos (\theta+\phi)$ and $\sin (\theta+\phi)$. Takeaway: linear algebra recovers trigonometric identities!
(ii) Apply the same strategy to compute formulas for $\cos (3 \theta)$ and $\sin (3 \theta)$ for any given angle θ. (You will multiply three matrices this time.)
B. Suppose A is an $n \times n$ invertible matrix. Show that if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis of \mathbb{R}^{n}, then the set of vectors $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ is also a basis of \mathbb{R}^{n}.
C. Let V be the vector space consisting of polynomials of degree at most n, which we considered in class. Show that the set of polynomials $1, x, x^{2}, \ldots, x^{n}$ is a basis of V.

