Homework 2

Problems in Strang:

§2.1: \# 4, 9, 10, 17, 26

And the following problems:

A. (a) For any two vectors $\mathbf{a}=(a, b, c)^{1}$ and $\mathbf{a}^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ we define the cross product

$$
\mathbf{a} \times \mathbf{a}^{\prime}=\left(b c^{\prime}-b^{\prime} c, \quad a^{\prime} c-a c^{\prime}, a b^{\prime}-a^{\prime} b\right)
$$

Use algebra to verify the identities $\mathbf{a} \cdot\left(\mathbf{a} \times \mathbf{a}^{\prime}\right)=0$ and $\mathbf{a}^{\prime} \cdot\left(\mathbf{a} \times \mathbf{a}^{\prime}\right)=0$. (Here \cdot is the dot product.) It follows that $\mathbf{a} \times \mathbf{a}^{\prime}$ is simultaneously perpendicular to \mathbf{a} and \mathbf{a}^{\prime}.
(b) Use the cross product to solve the following system of equations:

$$
\begin{array}{r}
x+2 y-z=0 \\
2 x-y+4 z=0
\end{array}
$$

(Hint: The solutions form a line. Look at what we did in class.)
B. (a) Consider the following system of linear equations:

$$
\begin{aligned}
x+2 y-z & =0 \\
2 x-y+4 z & =0 \\
x+y+c z & =-1
\end{aligned}
$$

Here c is a constant. Solve for x, y, z in the case that $c=1$. In this case the three planes intersect in a unique point - you should get one answer! (Use your solution to (B) for the first two planes. This is a line of the form $t(u, v, w)$. Plug into the third equation and solve for t.)
(b) Find the value of c for which the system has no solutions. In this case the third plane is parallel to the line of intersection of the first two planes.

[^0]
[^0]: ${ }^{1}$ Sometimes we write vectors horizontally as (a, b, c). But we are just being temporarily lazy: our convention in the course (and in Strang) is that vectors in Euclidean space are column vectors.

