Homework 1

Problems in Strang:

1.1: # 7, 9, 18, 19

And the following problems:

- A. Consider vectors $\mathbf{u} = (3,1)$ and $\mathbf{v} = (1,4)$. The set of vectors $t\mathbf{u} + (1-t)\mathbf{v}$ where t ranges over all real numbers forms a line; draw it. Do the same for $t(\mathbf{u} + \mathbf{v})$. Show that $(\mathbf{u} + \mathbf{v})/2$ is the intersection of these lines; explain the geometric meaning.
- B. Recall that the dot product is related to the angle between vectors: $\mathbf{u} \cdot \mathbf{v} = \|u\| \|v\| \cos \theta$.
 - (a) Compute the angle between $\mathbf{u} = (2, 1)$ and $\mathbf{v} = (-1, 5)$.¹
 - (b) Let \mathbf{u}, \mathbf{v} be vectors in 10-dimensional space satisfying $\mathbf{u} \cdot \mathbf{u} = 10$, $\mathbf{v} \cdot \mathbf{v} = 5$ and $\mathbf{v} \cdot \mathbf{u} = -1$. Compute the angle between \mathbf{u} and \mathbf{v} .
 - (c) Let \mathbf{u} , \mathbf{v} be vectors in 1000-dimensional space satisfying $\mathbf{u} \cdot \mathbf{u} = 1$, $\mathbf{v} \cdot \mathbf{v} = 2$ and $\mathbf{v} \cdot \mathbf{u} = 0$. Compute the angle between $\mathbf{u} + 2\mathbf{v}$ and $\mathbf{u} - \mathbf{v}$.
- C. A line in \mathbb{R}^2 can be described by solutions (x, y) to the equation ax + by = c, where a, b, c are fixed scalars. This equation can also be written

 $\mathbf{a} \cdot \mathbf{x} = c$

where $\mathbf{a} = (a, b)$ and $\mathbf{x} = (x, y)$.

- (a) Draw the 3 lines where $\mathbf{a} = (3, 2)$ and c is in the set $\{-1, 0, 1\}$.
- (b) Let $\mathbf{a} = (a, b)$ and c be arbitrary. Prove the line $\mathbf{a} \cdot \mathbf{x} = c$ is perpendicular to the line $t\mathbf{a}$ (the line described by all scalar multiples of \mathbf{a}).

¹You can use a calculator to evaluate arccos, i.e. the inverse of cosine.