## Homework 1

## Problems in Strang:

§1.1: \# 7, 9, 18, 19

## And the following problems:

A. Consider vectors $\mathbf{u}=(3,1)$ and $\mathbf{v}=(1,4)$. The set of vectors $t \mathbf{u}+(1-t) \mathbf{v}$ where $t$ ranges over all real numbers forms a line; draw it. Do the same for $t(\mathbf{u}+\mathbf{v})$. Show that $(\mathbf{u}+\mathbf{v}) / 2$ is the intersection of these lines; explain the geometric meaning.
B. Recall that the dot product is related to the angle between vectors: $\mathbf{u} \cdot \mathbf{v}=\|u\|\|v\| \cos \theta$.
(a) Compute the angle between $\mathbf{u}=(2,1)$ and $\mathbf{v}=(-1,5) .{ }^{1}$
(b) Let $\mathbf{u}, \mathbf{v}$ be vectors in 10-dimensional space satisfying $\mathbf{u} \cdot \mathbf{u}=10, \mathbf{v} \cdot \mathbf{v}=5$ and $\mathbf{v} \cdot \mathbf{u}=-1$. Compute the angle between $\mathbf{u}$ and $\mathbf{v}$.
(c) Let $\mathbf{u}, \mathbf{v}$ be vectors in 1000-dimensional space satisfying $\mathbf{u} \cdot \mathbf{u}=1, \mathbf{v} \cdot \mathbf{v}=2$ and $\mathbf{v} \cdot \mathbf{u}=0$. Compute the angle between $\mathbf{u}+2 \mathbf{v}$ and $\mathbf{u}-\mathbf{v}$.
C. A line in $\mathbb{R}^{2}$ can be described by solutions $(x, y)$ to the equation $a x+b y=c$, where $a, b, c$ are fixed scalars. This equation can also be written

$$
\mathbf{a} \cdot \mathbf{x}=c
$$

where $\mathbf{a}=(a, b)$ and $\mathbf{x}=(x, y)$.
(a) Draw the 3 lines where $\mathbf{a}=(3,2)$ and $c$ is in the set $\{-1,0,1\}$.
(b) Let $\mathbf{a}=(a, b)$ and $c$ be arbitrary. Prove the line $\mathbf{a} \cdot \mathbf{x}=c$ is perpendicular to the line $t \mathbf{a}$ (the line described by all scalar multiples of $\mathbf{a}$ ).

[^0]
[^0]:    ${ }^{1}$ You can use a calculator to evaluate arccos, i.e. the inverse of cosine.

