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PART 1 – GROUPS 

 

Week 0 Preliminaries. Injective, surjective, bijective functions. Ch. 1.3 

 Natural numbers. Proof by induction Ch. 1.4 

 Euclidean division algorithm. Greatest common divisor pp. 35,37--39 

 Fundamental theorem of Algebra (prime decomposition) 41-42 

 Finding all integer solutions of a linear equation aX + bY =1 Missing 

 Modular arithmetic: Zn. How to find the last digit of 917, say. Missing. See 44-45 

 Divisibility criteria missing 

   

Week 1 Groups: definition, uniqueness of inverse/identity, cancelation law 67—68, 77—80  

 Examples: (Z,+), (Q,+), (R,+), (Q*, × ), (R*, × ), GLn(R) ,  
{f:A --> A bijective}.  

66, 74 

 Examples: Cayley table of four 4-element groups  

 Subgroups: definition 84-85 

 3x1-criterion missing 

 Characterization of the subgroups of Z ? 

 Cyclic groups 96-97 

 Cyclic implies abelian ? 

   

Week 2 Period (or order) of an element 96—97, 92—93 

 LEMMA. xm=e IFF the period of x divides m. 93 (cor. 2.3.12) 

 Group homomorphisms: Definition of and examples 137-139 

 Definition of isomorphic groups 143 

 Every cyclic group is isomorphic to either Z, or some Zn ? 

 Between any two groups there is always a homomorphism (the 
“zero” homomorphism, mapping everything to the identity) 

? 

 LEMMA. For any homomorphism f, the period of f(x) divides the 
period of x. 

145 (ex.4) 

 Application: Number of homomorphisms from Z6 to Z8, say ? 

   

Week 3 Definition of ker f  and Im f 139—140  

 Normality. (Example: Ker f is always normal) 122—124  

 All subgroups of abelian groups are normal.  124 (rem. 2.7.1) 

 REVISION: The group Sn of permutations (non-abelian for n > 2) 104—105  

 How to write a permutation (3 ways): two-line notation, as product 
of disjoint cycles, as product of transpositions. 

Cf.108—111 

 Even permutations: the group An . Sketch of what a ‘simple’ group is.  
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Week 4 Left cosets of a subgroup. Definition; characterization as equivalence 

classes of a relation of equivalence (a b  a -1 b is in the subgroup) 

90-91 

 Lemma: Any two left cosets of a finite group have same number of 
elements 

Lemma 2.3.8 

 Lagrange Theorem. The size of any subgroup divides the size of the 
group. 

91 (thm. 2.3.9) 

 Corollary. If x is in G, the period of x divides the size of G.  

 Right cosets of a subgroup. Characterization as equivalence classes 

of a relation of equivalence (a b  a b -1 is in the subgroup) 

 

 H is normal if and only if  left cosets and right cosets coincide 127 (Lem. 2.7.6) 

 Prop. If a subgroup of G has half the elements of G, then it is normal. Ex. 4 p. 128 

 Quotient groups 131—132  

 {Normal subgroups} = {kernels of homomorphisms} ? 

Week 5 Products 190—191  

 Generators, linearly independent elements, bases  

 “Diagonalization” of integral matrices. 
THEOREM. Let A be any nonzero rectangular matrix with entries in Z. 
There are square integer matrices U, V, with determinant either 1 or 
-1, such that the matrix D=UAV is a (rectangular) matrix in which d11, 
…,  dtt are positive integers, whereas all other entries are zero. 

 

Week 6 THEOREM. Let H be a subgroup of Zn.  
Then there are positive integers  d1 , d2  …  dt  and there is a basis  
{v1 , v2  …  vn}  of Zn such that {d1v1 ,  d2v2  …  dtvt } are a basis of H.  

 

 STRUCTURE THEOREM. Every finitely generated abelian group is 
isomorphic to some product of cyclic groups. 

Cf. p. 207 

 LEMMA. Za x Zb  is isomorphic to Zab if and only if GCD(a,b)=1.  

 THEOREM. (Converse of Lagrange for Abelian groups). Let m be a 
number dividing the cardinality of an Abelian group G. Then, there 
exists a subgroup H of G that has cardinality m. 

 

 REMARK. [Converse of Lagrange is false in general] There is no 
cardinality-6 subgroup of the 12-element group A4  (the group of the 
even permutations of 4 elements.) 

 

 Structure Theorem, uniqueness version. Every finite abelian group 
can be decomposed in a unique way as product of cyclic groups 
whose sizes are prime powers. 
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Midterm 

PART 2 – RINGS 

 

Week 1 Rings: definition, examples, arithmetic properties. Commutative 
rings; Rings with 1. 

213-215 

 Domains: definition. [The book calls them “integral domains”] 226-229 

 Def. Field. Every finite domain is a field. 218, 229 

 Polynomials. Formal definition (as sequences).  
The indeterminate “X” stands for the sequence (0,1, 0….) 

(something similar on 
pages 234-240) 

 Degree of polynomials. Degree of sum. Degree of product. 
 

234; see also exercise 
1 on page 240 

 Exercise: if the leading term of F is invertible, deg(FG) ≥ deg G.  

 A is a domain IFF  A[x] is a domain.  

Week 2 Euclidean division of polynomials. Let A be any commutative ring 
with 1. Let F,G be two polynomials in A[X], such that the leading 
coefficient of G is invertible in A. Then there exists a unique pair 
(Q,R) of polynomials such that:  
(1) F=QG + R 
(2) either R=0, or deg R < deg G. 

287—290; the book 
does it only in the 
special case where 
the ring is a field (so 
leading coefficient’s 
obviously invertible). 

 Corollary: Ruffini’s theorem. Let a be an element of a commutative 
ring A with 1. Let F be a polynomial in A[X]. Then F(a)=0 if and only if 
F is a multiple of (X-a) 

293-294. Note: 
Works for any ring F, 
whether F is a field 
(as the book states) 
or not. 

 Theorem. In a domain A[x], every polynomial with n distinct roots 
has degree at least n. 
(This is false if A is not a domain: e.g. x2-4 has four roots in Z12). 

 

 Def: subring, ideal. 222, 244 

 Ring homomorphisms. (Example: the projection from Z to Zn; the 
“evaluation” homomorphism” from A[X] to A.) 
The image is always a subring, the kernel is even an ideal. 

241-244 

 LEMMA. If an ideal contains 1, it coincides with the whole ring. Ex. 4 p. 247 

 Corollary. A is a field IFF the only ideals of A are {0} and A itself.  

Week 3 Principal ideals. All ideals of Z are principal. 245 (ex. 3.4.8, 3.4.9) 

 Definition of PID. Some ideals of Z[X] are not principal, e.g. the ideal 
of polynomials whose constant term is even, (X,2) . 

 

 Theorem. A is a field  IFF  A[X]  is a PID. The direction “if A is a 
field, A[x] is a PID” is 
basically Thm 3.9.2, 
p.288, coupled with 
Thm 3.8.2, page 277. 
The other direction is 
not done in the book. 
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  Consequence: R[x,y] is not a PID.  

Week 4 Quotient rings. First homomorphism theorem for rings 250-254 

 Some remarkable isomorphism: A[x] mod (X-a) is isomorphic to A. 
R[x] mod (X2+1) is isomorphic to C (complex number). 

 

 Prime ideals.  258 

 PROP. The ideal (n) is prime in Z  IFF n is a prime number. 259 

 An ideal I is prime IFF the quotient A/I is a Domain 259 

 Sum of two ideals 254 

 Maximal ideals.  260; 275 

 An ideal I is maximal IFF A/I is a field. 260 

 All maximal  ideals are prime. Theorem: in a PID ring, all nonzero 
prime ideals are maximal. 

Remark 3.6.1, p. 260; 
the theorem is very 
similar to Theorem 
3.8.7, p.280 

 (X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)  

 Irreducible elements.  280 

 Irreducible elements in C[X] are precisely polynomials of degree 1. 
Irreducible elements in R[X] are precisely polynomials of degree 1, 
and also, polynomials of degree 2 with negative Delta. 

 

 Prop. If A domain, and (a) is prime, then a is irreducible. 
(The converse is false, e.g. 2 is irreducible in Z[-5], but not prime,  
basically because in this ring the number 6 factors in two different 
ways:  2 3 = 6 = (1 + -5) (1 + -5). The two factors on the right do 
not belong to the ideal (2), whereas their product (namely, 6) does.  

Missing (cf. also 
theorem below) 

 Theorem. If A PID, and a≠0, the following three facts are equivalent:  
1. the element a is irreducible;  
2. the ideal (a) is prime;  
3. The ideal (a) is maximal. 

Theorem 3.8.7, p. 
280 

 UFD rings. Examples: Z, Z[X], R, R[X], Q, Q[X], C, C[X]… 
Non-examples: Z[-5], which is a domain, is not UFD. 

304 

 Lemma: in a PID, every ascending chain of ideals stabilizes. missing 

 Theorem. PID implies UFD.  missing 

 Theorem [Gauss].  If A is UFD, then A[X] is UFD. 309 

 Remark 1. UFD does not imply PID; a counterexample is Z[X].  

 Remark 2. If A is UFD, then any two elements have a greatest 
common divisor. However, unless A is PID, it is not true that the 
ideal (a,b) is generated by their GCD! Think of a=X, b=2, inside Z[X]. 

 

 

 

 

 


