PART 1 – GROUPS

Week 0	Preliminaries. Injective, surjective, bijective functions.	Ch. 1.3
	Natural numbers. Proof by induction	Ch. 1.4
	Euclidean division algorithm. Greatest common divisor	pp. 35,3739
	Fundamental theorem of Algebra (prime decomposition)	41-42
	Finding all integer solutions of a linear equation aX + bY =1	Missing
	Modular arithmetic: Z _{n.} How to find the last digit of 9 ¹⁷ , say.	Missing. See 44-45
	Divisibility criteria	missing
Week 1	Groups: definition, uniqueness of inverse/identity, cancelation law	67—68, 77—80
	Examples: (Z,+), (Q,+), (R,+), (Q*, ×), (R*, ×), GL _n (R) , {f:A> A bijective}.	66, 74
	Examples: Cayley table of four 4-element groups	
	Subgroups: definition	84-85
	3x1-criterion	missing
	Characterization of the subgroups of Z	?
	Cyclic groups	96-97
	Cyclic implies abelian	?
Week 2	Period (or order) of an element	96—97, 92—93
	LEMMA. x ^m =e IFF the period of x divides m.	93 (cor. 2.3.12)
	Group homomorphisms: Definition of and examples	137-139
	Definition of isomorphic groups	143
	Every cyclic group is isomorphic to either Z, or some Z _n	?
	Between any two groups there is always a homomorphism (the "zero" homomorphism, mapping everything to the identity)	?
	LEMMA. For any homomorphism f, the period of f(x) divides the period of x.	145 (ex.4)
	Application: Number of homomorphisms from Z_6 to Z_8 , say	?
Week 3	Definition of ker f and Im f	139—140
	Normality. (Example: Ker f is always normal)	122—124
	All subgroups of abelian groups are normal.	124 (rem. 2.7.1)
	REVISION: The group S_n of permutations (non-abelian for $n > 2$)	104—105
	How to write a permutation (3 ways): two-line notation, as product of disjoint cycles, as product of transpositions.	Cf.108—111
	Even permutations: the group A_n . Sketch of what a 'simple' group is.	

Tentative study guide for Bruno's math 461d course (to the right: Cooperstein's book)

		00.01
Week 4	Left cosets of a subgroup. Definition; characterization as equivalence	90-91
	classes of a relation of equivalence (a \sim b \Leftrightarrow a ⁻¹ b is in the subgroup)	
	Lemma: Any two left cosets of a finite group have same number of	Lemma 2.3.8
	elements	
	Lagrange Theorem. The size of any subgroup divides the size of the	91 (thm. 2.3.9)
	group.	
	Corollary. If x is in G, the period of x divides the size of G.	
	Right cosets of a subgroup. Characterization as equivalence classes	
	of a relation of equivalence (a \sim b \Leftrightarrow a b $^{-1}$ is in the subgroup)	
	H is normal if and only if left cosets and right cosets coincide	127 (Lem. 2.7.6)
	Prop. If a subgroup of G has half the elements of G, then it is normal.	Ex. 4 p. 128
	Quotient groups	131—132
	{Normal subgroups} = {kernels of homomorphisms}	?
Week 5	Products	190—191
	Generators, linearly independent elements, bases	
	"Diagonalization" of integral matrices.	
	THEOREM. Let A be any nonzero rectangular matrix with entries in Z.	
	There are square integer matrices U, V, with determinant either 1 or	
	-1, such that the matrix D=UAV is a (rectangular) matrix in which d_{11} ,	
	, d _{tt} are positive integers, whereas all other entries are zero.	
Week 6	THEOREM. Let H be a subgroup of Z ⁿ .	
	Then there are positive integers $d_1, d_2 \dots d_t$ and there is a basis	
	$\{v_1, v_2 \dots v_n\}$ of Z ⁿ such that $\{d_1v_1, d_2v_2 \dots d_tv_t\}$ are a basis of H.	
	STRUCTURE THEOREM. Every finitely generated abelian group is	Cf. p. 207
	isomorphic to some product of cyclic groups.	
	LEMMA. $Z_a \times Z_b$ is isomorphic to Z_{ab} if and only if GCD(a,b)=1.	
	THEOREM. (Converse of Lagrange for Abelian groups). Let m be a	
	number dividing the cardinality of an Abelian group G. Then, there	
	exists a subgroup H of G that has cardinality m.	
	REMARK. [Converse of Lagrange is false in general] There is no	
	cardinality-6 subgroup of the 12-element group A ₄ (the group of the	
	even permutations of 4 elements.)	
	Structure Theorem, uniqueness version. Every finite abelian group	
	can be decomposed in a unique way as product of cyclic groups	
	whose sizes are prime powers.	

Tentative study guide for Bruno's math 461d course (to the right: Cooperstein's book)

Midterm

PART 2 – RINGS

Week 1	Rings: definition, examples, arithmetic properties. Commutative rings; Rings with 1.	213-215
	Domains: definition. [The book calls them "integral domains"]	226-229
	Def. Field . Every finite domain is a field.	218, 229
	Polynomials. Formal definition (as sequences).	(something similar on
	The indeterminate "X" stands for the sequence (0,1, 0)	pages 234-240)
	Degree of polynomials. Degree of sum. Degree of product.	234; see also exercise
	Exercise: if the leading term of F is invertible, deg(FG) \geq deg G.	1 on page 240
	A is a domain IFF $A[x]$ is a domain.	
Week 2	Euclidean division of polynomials. Let A be any commutative ring	287—290; the book
	with 1. Let F,G be two polynomials in A[X], such that the leading	does it only in the
	coefficient of G is invertible in A. Then there exists a unique pair	special case where
	(Q,R) of polynomials such that:	the ring is a field (so
	(1) F=QG + R	leading coefficient's
	(2) either R=0, or deg R < deg G.	obviously invertible).
	Corollary: Ruffini's theorem . Let a be an element of a commutative	293-294. Note:
	ring A with 1. Let F be a polynomial in A[X]. Then F(a)=0 if and only if	Works for any ring F,
	F is a multiple of (X-a)	whether F is a field
		(as the book states)
		or not.
	Theorem. In a domain A[x], every polynomial with n distinct roots	
	has degree at least n.	
	(This is false if A is not a domain: e.g. x^2 -4 has four roots in Z_{12}).	
	Def: subring, ideal.	222, 244
	Ring homomorphisms. (Example: the projection from Z to Z _n ; the	241-244
	"evaluation" homomorphism" from A[X] to A.)	
	The image is always a subring, the kernel is even an ideal.	
	LEMMA. If an ideal contains 1, it coincides with the whole ring.	Ex. 4 p. 247
	Corollary. A is a field IFF the only ideals of A are {0} and A itself.	
Week 3	Principal ideals. All ideals of Z are principal.	245 (ex. 3.4.8, 3.4.9)
	Definition of PID. Some ideals of Z[X] are not principal, e.g. the ideal	
	of polynomials whose constant term is even, (X,2).	
	Theorem . A is a field IFF A[X] is a PID.	The direction "if A is a
		field, A[x] is a PID" is
		basically Thm 3.9.2,
		p.288, coupled with
		Thm 3.8.2, page 277.
		The other direction is
		not done in the book.

Tentative study guide for Bruno's math 461d course (to the right: Cooperstein's	book)
---	-------

Week 4Quotient rings. First homomorphism theorem for rings250-254Some remarkable isomorphism: A[x] mod (X-a) is isomorphic to A. R[x] mod (X ² +1) is isomorphic to C (complex number).258Prime ideals.258PROP. The ideal (n) is prime in Z IFF n is a prime number.259An ideal I is prime IFF the quotient A/I is a Domain259Sum of two ideals260; 275An ideal I is maximal IFF A/I is a field.260All maximal ideals.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.Irreducible elements.280Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[v-5], but not prime, basically because in this ring the number 6 factors in two different ways: $2 3 = 6 = (1 + \sqrt{-5}) (1 + \sqrt{-5})$. The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Theorem 3.8.7, p. 280Theorem. If A PID, and a≠0, the following three facts are equivalent: 1. the element a is irreducible;Theorem 3.8.7, p.	
R[x] mod (X²+1) is isomorphic to C (complex number).Z58Prime ideals.258PROP. The ideal (n) is prime in Z IFF n is a prime number.259An ideal I is prime IFF the quotient A/I is a Domain259Sum of two ideals254Maximal ideals.260; 275An ideal I is maximal IFF A/I is a field.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + $\sqrt{-5}$) (1 + $\sqrt{-5}$). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Mieorem 3.8.7, p.Theorem. If A PID, and a≠0, the following three facts are equivalent:Theorem 3.8.7, p.	
Prime ideals.258PROP. The ideal (n) is prime in Z IFF n is a prime number.259An ideal I is prime IFF the quotient A/I is a Domain259Sum of two ideals254Maximal ideals.260; 275An ideal I is maximal IFF A/I is a field.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[√-5], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + √-5) (1 + √-5). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Misorem 3.8.7, p.Theorem. If A PID, and a≠0, the following three facts are equivalent:Theorem 3.8.7, p.	
PROP. The ideal (n) is prime in Z IFF n is a prime number.259An ideal I is prime IFF the quotient A/I is a Domain259Sum of two ideals254Maximal ideals.260; 275An ideal I is maximal IFF A/I is a field.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[√-5], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + √-5) (1 + √-5). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Misorem 3.8.7, p.	
An ideal I is prime IFF the quotient A/I is a Domain259Sum of two ideals254Maximal ideals.260; 275An ideal I is maximal IFF A/I is a field.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p.prime ideals are maximal.the theorem is vsimilar to Theore 3.8.7, p.2803.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)280Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[√-5], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + √-5) (1 + √-5). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Mieorem 3.8.7, p.Theorem. If A PID, and a≠0, the following three facts are equivalent:Theorem 3.8.7, p	
Sum of two ideals254Maximal ideals.260; 275An ideal I is maximal IFF A/I is a field.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + $\sqrt{-5}$) (1 + $\sqrt{-5}$). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Misorem 3.8.7, p.Theorem. If A PID, and a≠0, the following three facts are equivalent:Theorem 3.8.7, p.	
Maximal ideals.260; 275An ideal I is maximal IFF A/I is a field.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + $\sqrt{-5}$) (1 + $\sqrt{-5}$). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Misorem 3.8.7, p.Theorem. If A PID, and a≠0, the following three facts are equivalent:Theorem 3.8.7, p.	
An ideal I is maximal IFF A/I is a field.260All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[√-5], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + √-5) (1 + √-5). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Misorem 3.8.7, p.Theorem. If A PID, and a≠0, the following three facts are equivalent:Theorem 3.8.7, p.	
All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.280Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: $2 \ 3 = 6 = (1 + \sqrt{-5}) \ (1 + \sqrt{-5})$. The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Misorem 3.8.7, p.Theorem. If A PID, and $a \neq 0$, the following three facts are equivalent:Theorem 3.8.7, p.	
All maximal ideals are prime. Theorem: in a PID ring, all nonzero prime ideals are maximal.Remark 3.6.1, p. the theorem is v similar to Theore 3.8.7, p.280(X) is prime in Z[x], but not maximal. (In fact, Z[x] is not a PID.)Irreducible elements.280Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1. Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. also theorem below)Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: $2 \ 3 = 6 = (1 + \sqrt{-5}) \ (1 + \sqrt{-5})$. The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Misorem 3.8.7, p.Theorem. If A PID, and $a \neq 0$, the following three facts are equivalent:Theorem 3.8.7, p.	
Irreducible elements.280Irreducible elements in C[X] are precisely polynomials of degree 1.Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. alsoProp. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: $2 \ 3 = 6 = (1 + \sqrt{-5}) (1 + \sqrt{-5})$. The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Theorem 3.8.7, proceeding the transmission of the state o	m
Irreducible elements in C[X] are precisely polynomials of degree 1.Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + $\sqrt{-5}$) (1 + $\sqrt{-5}$). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Missing (cf. also theorem 3.8.7, provide the statement of the	
Irreducible elements in R[X] are precisely polynomials of degree 1, and also, polynomials of degree 2 with negative Delta.Missing (cf. alsoProp. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in Z[$\sqrt{-5}$], but not prime, basically because in this ring the number 6 factors in two different ways: $2 \ 3 = 6 = (1 + \sqrt{-5}) (1 + \sqrt{-5})$. The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Missing (cf. also theorem below)Theorem. If A PID, and a≠0, the following three facts are equivalent:Theorem 3.8.7, p	
Prop. If A domain, and (a) is prime, then a is irreducible. (The converse is false, e.g. 2 is irreducible in $Z[\sqrt{-5}]$, but not prime, basically because in this ring the number 6 factors in two different ways: $2 \ 3 = 6 = (1 + \sqrt{-5}) (1 + \sqrt{-5})$. The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does.Missing (cf. also theorem below)Theorem. If A PID, and $a \neq 0$, the following three facts are equivalent:Theorem 3.8.7, product (namely)	
 basically because in this ring the number 6 factors in two different ways: 2 3 = 6 = (1 + √-5) (1 + √-5). The two factors on the right do not belong to the ideal (2), whereas their product (namely, 6) does. Theorem. If A PID, and a≠0, the following three facts are equivalent: Theorem 3.8.7, provide the term of term of terms. 	
Theorem . If A PID, and $a \neq 0$, the following three facts are equivalent: Theorem 3.8.7, p	
2. the ideal (a) is prime;3. The ideal (a) is maximal.	1.
UFD rings. Examples: Z, Z[X], R, R[X], Q, Q[X], C, C[X]304Non-examples: Z[√-5], which is a domain, is not UFD.304	
Lemma: in a PID, every ascending chain of ideals stabilizes. missing	
Theorem. PID implies UFD. missing	
Theorem [Gauss].If A is UFD, then A[X] is UFD.309	
Remark 1. UFD does not imply PID; a counterexample is Z[X].	
Remark 2. If A is UFD, then any two elements have a greatest common divisor. However, unless A is PID, it is not true that the	
ideal (a,b) is generated by their GCD! Think of a=X, b=2, inside Z[X].	