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- N THIS CHAPTER we describe an elementary version of the method fh
? that can be used to solve a linear programming problem systemati- I !
. cally. In Chapter 1 we developed the algebraic and geometric i
4 notions that allowed us to characterize the solutions (o 2 linear program- il
A ming problem. However, for problems of more than three variables, the i’
{| characterization did not lead to a practical method for actually finding the I
) solutions. We know that the solutions are extreme points of the set of | %L
..*T feasible solutions. The method that we present determines the extreme i

points in the set of feasible solutions in a particular order that allows us to i
;"_'I find an optimal solution in a small number of trials, We first consider i

{ problems in standard form because when applying the method to these
o problems it is easy to find a starting point. The second section discusses a il
' potential pitfall with the method. However, the difficulty rarely arises and
L has almost never been found when solving practical problems. In the third
= i section, we extend the method to arbitrary linear programming problems if}
Ly by developing a way of constructing a starting point. v
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104 Chapter 2 The Simplex Method

21 THE SIMPLEX METHOD FOR PROBLEMS IN STANDARD FORM

We already know from Section 1.5 that a linear programming problem
in canonical form can be solved by finding all the basic solutions, discard-
ing those that are not feasible, and finding an optimal solution among the
remaining. Since this procedure can still be a lengthy one, we seek a more
officient method for solving linear programming problems. The simplex
algorithm is such a method; in this section we shall describe and carefully
illustrate it. Even though the method is an algebraic one, it is helpful to
examine it geomeltrically.

Consider a linear programming problem in standard form

Maximize z =c¢'x (N

subject to
Ax < b (2)
x>0, ©)

where A = [a”-] is an m X n matrix and

/)1 Cl xl

b, Cy ip
b= , ¢=|.|, and x=

b Cll xn

In this section we shall make the additional assumption that b > 0. In
Section 2.3 we will describe a procedure for handling problems in which b

is not nonnegative.
We now transform each of the constraints in (2) into an equation by

introducing a slack variable. We obtain the canonical form of the problem,

namely

Maximize z = ¢'x (4)
subject to
Ax =D (5)
x=0, (6)
where in this case A is the m X (n + m) matrix
a,; Ay e @, 1 0 - 0
o 1 - 0
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1 X,
c
. 2 xz
c = g n|, x= y !
0 Xn+1
6 J x” +m J

and b is as before.
Recall from Section 1.5 that a basic feasible solution to the canonical

form of the problem (4), (5), (6) is an extreme point of the convex set S’ of
all feasible solutions to the problem.

DEFINITION.  Two distinct extreme points in " are said to be adjacent

if as basic feasible solutions they have all but one basic variable in
common. . : A

ExampLe 1. Consider Example 2 of Section 1.5 and especially Table
L5 in that example. The extreme points (0,0,8,15) and (0,4,0,3) are
adjacent, since the basic variables in the first extreme point are u and »
and the basic variables in the second extreme point are y and v. In fact,
the only extreme point that is not adjacent to (0,0,8,15)is (2, £,0,0). A
The simplex method developed by George B. Dantzig in 1947 is a
method that proceeds from a given extreme point (basic feasible solution)
to an adjacent extreme point in such a way that the value of the objective
function increases or, at worst, remains the same. The method proceeds
until we either obtain an optimal solution or find that the given problem
has no finite optimal solution. The simplex algorithm consists of two steps:
(1) a way of finding out whether a given basic feasible solution is an
optimal solution and (2) a way of obtaining an adjacent basic feasible
solution with the same or larger value for the objective function. In actual
use, the simplex method does not examine every basic feasible solution; it
checks only a relatively small number of them, However, examples have
been given in which a large number of basic feasible solutions have been
examined by the simplex method.
We shall demonstrate parts of our description of the simplex method on
the linear programming problem in Example 1 of Section 1.1. The associ-
ated canonical form of the problem was described in Example 4 of Section

—




106 Chapter 2 The Simplex Method

1.2. In this form it is:

Maximize z = 120x + 100y (7)
subject to
2x + 2y + u = 8
b - (8)
Sx + 3y +ov =15
x>0, y>20, u=0, vz=0, (9

The Initial Basic Feasible Selution

To start the simplex method, we must find a basic feasible solution, The
assumption that b > 0 allows the following procedure to work. If it is not
true that b > 0, another procedure (discussed in Section 2.3) must be used.
We take all the nonslack variables as nonbasic variables; that is, we set all
the nonslack variables in the system Ax = b equal to zcro. The basic
variables are then just the slack variables. We have

h

mwm T Y

X =xXp= - =x,=0 and x,,,=b, x,.,=b,, ... x

This is a feasible solution, since b > 0; and it is a basic solution, since
(n + m) — m = n of the variables are zero.
In our example, we let

x=y=0.

Solving for u and v, we obtain

The initial basic feasible solution constructed by this method is (0, 0, 8, 15).
The basic feasible solution yiclds the extreme point (0,0) in Figure 1.14
(Section 1.4). ;

It is useful to set up our example and its initial basic feasible solution in
tabular form. To do this, we write (7) as

—120x — 100y + z = 0, am

where z is now viewed as another variable. The initial tableau is now
formed (Tableau 2.1). At the top we list the variables x, y, u, v, and 7 as
labels on the corresponding columns. The last row, called the objective
row, is Equation (10). The constraints (8) are on the first two rows. Along
the left side of each row we indicate which variable is basic in the
corresponding equation. Thus, in the first equation u is the basic variable,
and v is the basic variable in the second equation.
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Tableau 2.1
x y u v z
u 2 2 1 0 8
v 5 3 0 1 0 15
—-120 —100 0 0 1 0

In the tableau, a basic variable has the following properties:

1. It appears in exactly one equation and in that equation it has a
coefficient of +1.

2. The column that it labels has all zeros (including the objective row
entry) except for the +1 in the row that is labeled by the basic variable.

3. The value of a basic variable is the entry in the same row in the
rightmost column.

The initial tableau for the general problem (4), (5), (6) is shown in Tableau
2.2. The value of the objective function

z=cx  +cxy+ e, x, +0-x, .+ +00x,,,
for the initial basic feasible solution is
z=¢,-0+c¢,-0+--+¢c,0+0-b;, +0:-by + - + 0-b,=0.

Notice that the entry in the last row and rightmost column is the value of
the objective function for the initial basic feasible solution.

Tableau 2.2
X1 X2 Tt X, Xne1 Xug2 7 Xawm 2
Xnt1 | A1 912 o4y, 1 0 #0 015
x_n+z f121 f‘zz f12n 1 0 0 b,
Ypim | @1 @pa a,, 0 0 1 0| b,
tl —ep —oy —c, 0 0 0 110

In our example we have
z=120-0+100-0+0-8+0-15=0.

At this point the given linear programming problem has been trans-
formed to the initial tableau. This tableau displays the constraints and
objective function along with an initial basic feasible solution and the
corresponding value of the objective function for this basic feasible solu-
tion. We are now ready to describe the steps in the simplex method that
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are used repealedly to create a sequence of tableaux, terminating in a
tableau that yields an optimal solution to the problem.

Checking an Optimality Criterion

We shall now turn to the development of a criterion that will determine
whether the basic feasible solution represented by a tableau is, in fact,
optimal. For our example we can increase the value of z from its value of
0 by increasing any one of the nonbasic variables having a positive
coefficient from its current value of 0 to some positive value. For our
cxample,

z=120x + 100y + 0-u + 0 -0,
so that z can be increased by increasing either x or y.

For an arbitrary tablcau, if we write the objective function so that the
coefficients of the basic variables are zero, we then have

z= Y, dx;+ Y 0-x, (11)

nonbasic basic

where the d;’s are the negatives of the entries in the objective row of the
tableau. We see that (11) has some terms with positive coefficients if and
only if the objective row has negative entries under some of the columns
labeled by nonbasic variables. Now the value of z can be increased by
increasing the value of any nonbasic variable with a negative entry in the
objective row from its current value of 0. If this is done, then some basic
variable must be set to zero since the number of basic variables is to
remain unchanged. Setting this basic variable to zero will not change the
value of the objective function since the coefficient of the basic variable
was zero. We summarize this discussion by stating the following optimality
criterion for testing whether a feasible solution shown in a tableau is an
optimal solution.

Optimality Criterion. If the objective row of a tableau has zero
entries in the columns labeled by basic variables and no
negative entries in the columns labeled by nonbasic variables,
then the solution represented by the tableau is optimal.

As soon as the optimality criterion has been met, we can stop our
computations, for we have found an optimal solution.

e ey s 2
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Selecting the Entering Variable

Suppose now that the objective row of a tableau has negative entries in
the labeled columns. Then the solution shown in the tableau is nol
optimal, and some adjustment of the values of the variables must be made.

The simplex method proceeds from a given extreme point (basic feasible
solution) to an adjacent extreme point in such a way that the objective
function increases in value. From the definition of adjacent extreme point,
it is clear that we reach such a point by increasing a single variable from
zero to a positive value and decreasing a variable with a positive value to
zero. The largest increase in z per unit increase in a variable oceurs for
the most negative entry in the objective row. We shall see below that, if
the feasible set is bounded, there is a limit on the amount by which we can
increase a variable. Because of this limit, it may turn out that a larger
increase in z may be achieved by not increasing the variable with the most
negative entry in the objective row, However, this rule is most commonly
followed because of its computational simplicity. Some computer imple-
mentations of the simplex algorithm provide other strategies for choosing
the variable to be increased. including one as simple as choosing the first
negative entry. Another compares increases in the objective function for
several likely candidates for the entering variable. In Tableau 2.1, the most
negative entry, —120, in the objective row occurs under the column, so
that x is chosen to be the variable to be increased from zero to a positive
value. The variable to be increased is called the entering variable, since in
the next iteration it will become a basic variable; that is, it will enter the
set of basic variables. If there are several possible entering variables,
choose one. (This situation will oceur when the most negative entry in the
objective row occurs in more than one column.) Now an increase in one
variable must be accompanied by a decrease in some of the other variables
to maintain a solution to Ax = b,

Choosing the Departing Variable
Solving (8) for the basic variables x and v, we have
U= 8-2x-2y
v =15 5x — 3.

We increase only x and keep y at zero. We have

u= 8- 2x
v 15—5x}’ (12)

which shows that as x increases both u and v decrease. By how much can
we increase x? It can be increased until either u or v becomes negative.
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That is, from (9) and (12) we have
0<wu= 8- 2x
0<v=15— 5x.
Solving these inequalitics for x, we find
2x< 8 or x< 8/2=4

and
' S5x

IA

15 or x=<15/5=3.

We see that we cannot increase x by more than the smaller of the two
ratios 8 /2 and 15/5. Letting x = 3, we obtain a new feasible solution,

x=3, y=0, u=2, v=0.

In fact, this is a basic feasible solution, and it was constructed to be
adjacent to the previous basic feasible solution, since only one variable
changed from basic to nonbasic. The new basic variables are x and u; the
nonbasic variables are y and v. The objective function now has the value

z=120-3 +100-0+0-2 +0-0 = 3060,

which is a considerable improvement over the previous value of zero.

The new basic feasible solution yields the extreme point (3,0) in Figure
1.14, and it is adjacent to (0,0). In the new basic feasible solution to our
example, we have the variable v = 0. It is no longer a basic variable
because it is zero, and it is called a departing variable since it has departed
from the set of basic variables. The column of the entering variable is
called the pivotal column; the row that is labeled with the departing
variable is called the pivotal row.

We now examine more carefully the selection of the departing variable.
Recall that the ratios of the rightmost column entries to the corresponding
entries in the pivotal column were determined by how much we could
increase the entering variable (x in our example). These ratios are called
O-ratios. The smallest nonnegative 0-ratio is the largest possible value for
the entering variable. The basic variable labeling the row where the
smallest nonnegative 6-ratio occurs is the departing variable, and the row
is the pivotal row. In our example,

min{8/2,15/5} = 3,

and the second row in Tableau 2.1 is the pivotal row.

If the smallest nonnegative ¢-ratio is not chosen, then the next basic
solution is not feasible. Suppose we had chosen u as the departing variable
by choosing the 6-ratio as 4. Then x = 4, and from (12) we have

u= 8-2-4=90
v=15—-5-4= =5,

) Ty e
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and the next basic solution is
x=4, y=0, u=0, v= -5,
which is not feasible.

In the general case, we have assumed that the rightmost column will
contain only nonnegative entries. However, the entries in the pivotal
column may be positive, negative, or zero. Positive entries lead to non-
negative O-ratios, which are fine. Negative entries lead to nonpositive
G-ratios. In this case, there is no restriction imposed on how far the

entering variable can be increased. For example, suppose the pivotal
column in our example were

-2 . 2
[ 5] instead of [5]

Then we would have, instead of (12),

u= 8+ 2x
v=15- 5x.
Since 1 must be nonnegative, we find that
8+2x>0 or x> —4,
which puts no restriction on how far we can increase x. Thus, in calculat-
ing @-ratios we can ignore any negative entries in the pivotal column.,

If an entry in the pivotal column is zero, the corresponding (-ratio is
undefined. However, checking the equations corresponding to (12), but
with one of the entries in the pivotal column equal to zero, will show that
no restriction is placed on the size of x by the zero entry. Consequently, in
forming the 6-ratios we use only the positive entries in the pivotal column
that are above the objective row.

If all the entries in the pivotal column above the objective row are
either zero or negative, then the entering variable can be made as large as
we wish. Hence, the given problem has no finite optimal solution, and we
can stop.

Forming a New Tableau

Having determined the entering and departing variables, we must
obtain a new tableau showing the new basic variables and the new basic
feasible solution. We illustrate the procedure with our continuing example.
Solving the second equation of (8) (it corresponds to the departing vari-
able) for x, the entering variable, we have

x=3-3y- 1y (13)
Substituting (13) into the first equation of (8), we get
2BG-3y—1v) +2y+u=38




112 Chapter 2 The Simplex Method

or
Iy +u—2e=2. (14)
We also rewrite (13) as
x + 1y + t0 = 3. (15)
Substituting (13) into (7), we have
(=12003 — 2y —t0) — 100y +z =0

or
—28y + 240 + z = 360. (16)

Since in the new basic feasible solution we have y = v = 0, the value of z
for this solution is 360. This value appears as the entry in the last row and
rightmost column. Equations (14), (15), and (16) yield the new tableau
(Tableau 2.3).

Tableau 2.3

Observe that the basic variables in Tableau 2.3 are x and u. By
comparing Tableaus 2.1 and 2.3, we see that the steps that were used to
obtain Tableau 2.3 from Tableau 2.1 are as follows.

Step a. l.ocate and circle the entry at the intersection of the pivotal
row and pivotal column. This entry is called the pivot. Mark the pivotal
column by placing an arrow | above the entering variable, and mark the
pivotal row by placing an arrow < to the left of the departing variable.

Step b. If the pivot is k, multiply the pivotal row by 1/k, making the
entry in the pivot position in the new tableau equal to 1.

Step ¢.  Add suitable multiples of the new pivotal row to all other rows
(including the objective row), so that all other elements in the pivotal
column become zero.

Step d. In the new tableau, replace the label on the pivotal row by the
entering variable.

These four steps constitute a process called pivoting. Steps b and ¢ use
elementary row operations (see Section 0.2) and form one iteration of the
procedure used to transform a given matrix to reduced row echelon form.
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We now repeat Tableau 2.1 with the arrows placed next to the entering
and departing variables and with the pivot circled (Tableau 2.1a).

Tableau 2.1a
l
D2 y u v z
u 2 2 1 0 0 8
| ‘ v ® 3 0 1 0 15
' “ ~100

Tableau 2.3 was obtained from Tableau 2.1 by pivoting. We now repeat
the process with Tableau 2.3. Since the most negative entry in the objective
row of Tableau 2.3, —28, occurs in the second column, y is the entering !
variable of this tableau and the second column is the pivotal column. To
find the departing variable we form the 6-ratios, that is, the ratios of the [
entries in the rightmost column (except for the objective row) to the ||
corresponding entries of the pivotal column for those entries in the pivotal
column that are positive. The 6-ratios are

The minimum of these is 3, which occurs for the first row. Therefore, the
pivotal row is the first row, the pivot is 5, and the departing variable is u.
We now show Tableau 2.3 with the pivot, entering, and departing variables
marked (Tableau 2.3a). i

e =

Tableau 2.3a

24

-

, We obtain Tableau 2.4 from Tableau 2.3 by pivoting. Since the objective 8
‘ row in Tableau 2.4 has no negative entries, we are finished, by the f

optimality criterion. That is, the indicated solution, |

3 )’Z%, =05 U=O, I

[SII%)

x=
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Tableau 2.4
X y u v z
y 0 1 2 -1 0 3
x 1 0 = 4 0 B
0 0 35 10 1 430

is optimal, and the maximum value of z is 430. Notice from Figure 1.14
that we moved from the extreme point (0,0) to the adjacent extreme point
(3,0) and then to the adjacent extreme point (3,3). The value of the
objective function started at (, increased to 360, and then to 430, the entry
in the last row and rightmost column.

Summary of the Simplex Method

We assume that the linear programming problem is in standard form
and that b > 0. In this case the initial basic feasible solution is

[8)

In subsequent sections we will show how to extend the simplex method to
other linear programming problems.

Step 1. Set up the initial tableau.

Step 2. Apply the optimality test: If the objective row has no negative
entries in the labeled columns, then the indicated solution is optimal. Stop
computation.

Step 3. Find the pivotal column by determining the column with the
most negative entry in the objective row. If there are several possible
pivotal columns, choose any one.

Step 4. Find the pivotal row. This is done by forming the @-ratios—the
ratios formed by dividing the entries of the rightmost column (except for
the objective row) by the corresponding entries of the pivotal columns
using only those entries in the pivotal column that are positive. The pivotal
row is the row for which the minimum ratio occurs. If two or more §-ratios
are the same, choose one of the possible rows. If none of the entries in the
pivotal column above the objective row is positive, the problem has no
finite optimum. We stop our computation in this case.

Step 5. Obtain a new tableau by pivoting. Then return to Step 2.

In Figure 2.1 we give a flowchart and in Figure 2.2, a structure diagram
for the simplex algorithm. :

The reader can use the SMPX courseware described in Appendix C to
experiment with different choices of pivot, observing how some choices
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Set up
initial tableau
" Arc there negative NO Indicated
_..& cntries in the - : solqlion is
. objective row? optimal
~ .

N

YES

1 Get pivotal column l

A~

Are there any
positive entries in There is no
pivotal column { finite optimal
above solution
abjective row? :

Get pivotal row j

Compute a new
tableau by pivoting

FIGURE 2.1  Flowchart for simplex algorithm (standard form, b > 0).

lead to infeasible solutions. The courseware will also allow the user to step
through the iterations of the simplex algorithm so that the intermediate
tableaux can be examined.

The reader should note that the z column always appears in the form

in any simplex tableau. We included it initially to remind the reader that
each row of a tableau including the objective row represents an equation
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Setup initial tablean

WHILE negative entries in objective row DO

Get pivotal column

S~ Positive entries in pivotal column
\\ah:wc objective row
TRUIL: " FALSE
Gel pivotal row No finite optimal

solution exists

Compute new tableau
by pivoting STOoP

Present tableau represents optimal solution

FIGURE 2.2 Structure diagram of simplex algorithm (standard form, b > 0).

in the variables x,, x,,..., x,, z. From this point on we will not include the
z column in tableaux. The student should remember to read the objective
row of a tableau as an equation that involves z with coefficient + 1.

EXAMPLE 2. We solve the following lincar programming problem in
standard form by using the simplex method:

Maximize z = 8x; + 9x, + Sx,
subject to
X+ xy+ 2x5 <
2x) + 3x, +4x;, <3
6x, + 6x, + 2x; <

8
X120, x>0, x320.

We first convert the problem to canonical form by adding slack vari-
ables, obtaining:

Maximize z = 8x; + 9x, + Sx,

subject to

X+ oxy 4+ 2x + x4 =2
2x; + 3x, + 4x, + xs =3
0x; + 6x, + 2x,4 +x,=28

X 20, j=1,2,...,6.
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i
Tableau 2.5 :
1 !
X, X, X3 X4 X5 ¥g i \
X4 1 1 2 0 0 '
- Xs 2 ® 4 0 1 0 3 '
|
X 6 6 2 0 0 1 (i
-8 -9 -5 0 0 0 0 :
Tableau 2.6 |
! il
X X, 5 X4 o X . ;
|
X, : 0 e 1 - 0 1 [
X, z 1 4 0 1 0 it l
- Xg @ 0 -6 0 -2 1 2 (il
0 0
Tableau 2.
X4 0 0 3 1 -3 z |
X, 1 L 0 1 ~1 + |
X 1 0 -3 0 - s 1 '
0 1

The initial tableau is Tableau 2.5; the succeeding tableaux are Tableaux
2.6 and 2.7.
Hence, an optimal solution to the standard form of the problem is

1
=1 x,=3, x3=0.

The values of the slack variables are

X4=%, x5=0, x6=0.
The optimal value of z is 11. A

ExampLE 3. Consider the linear programming problem

Maximize z = 2x; + 3x, + x5 + x4

subject to |
X, — X, — X < 2
—2xy +5x, —3x; —3x, <10
2x; — 5x, +3x,< 5

x>0, j=1,2,3,4.

j =
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To solve this problem by the simplex method, we first convert the
problem to canonical form by adding slack variables obtaining

e

_—

Maximize z = 2x, + 3x, +x, + x,

i

subject to I
X|— Xp — X4 it P = 2 ?

— 25 & b = B; = 8v3, + x, =10 4
2x, — 5x, + 3x, +x;,= 5 1
X, 20, j=12,...,7. i

The initial tableau is Tableau 2.8; the following tableaux are Tableaux 2.9
and 2.10.

In Tableau 2.10, the most negative entry in the objective row is — 2, so
the departing variable is x;. However, none of the entries in the pivotal
i column (the third column) is positive, so we conclude that the given | |

e ———

|
| problem has no finite optimal solution. A |
1 |
Tableau 2.8 l
! l
! A2 3 X4 As X6 X7 ;
Xs 1 -1 -1 0 1 0 0 2
| x| -2 ® -3 -3 0 1 0 | 10
X 2 =5 0 3 0 0 5
-2 -3 -1 -1 0 0 0] o -
Tableau 2.9 y
|
! g |
x X, 23 o X5 Xg X o \ J
e
e 1 R e S R k
x | =% 1 -3 -1 0o i 0 2
Xq 0 -3 0 0 1 1 15 i
g U 0 0 6 e
Tableau 2.10 o
X 25 X3 X4 5 6 2]
1 5 =
X 0 1 = = = =
0 0 oo
S e A A 2
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2.1 EXERCISES
In Exercises 1 and 2, set up the initial simplex tableau.

1. Maximize z = 2x + 5y
subject to

3x+5y< 8
2x + Ty < 12
x>0, y=0.

2. Maximize z = x; + 3x, + 5x;
subject to

2x; — 5%y + X3 <3

X, + 4x, <5

X, 20, x,20, x320.

" 3. Consider the following simplex tableau.

Xs
. e} 0 0 2 1 2 0 0 g
x 1 0 5 0 -3 0 -2 2
5 0 0 3 0 4 1 —4 2
X, 0 1 0 0 2 0 0 i

Determine the departing variable if the entering variable is (a) x5 (b) x5
(©) x,.

2t In Exercises 4—7 use one iteration of the simplex algorithm to obtain the next
tableau from the given tableau.

4.
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I
5.
X X BN g
X [ 2 0 1 3
Xy 0 T 1 —1 2
0 —4 0 —4 u
Y6,
2] o) Ay X4 £s
o2 z 0 1 2 0 3
Xy b 1 0 1 0 %
x5 5 0 0 i 1 z
4 0 0 -5 0
7.
Xy X, X e
X, 1 5 0 4
X4 = 0 2 1 6
-3 0 2 0 7/

8. (a) The following tableau arose in the course of using the simplex algorithm to
solve a linear programming problem. What basic feasible solution does this

A 9. Consider the following tableau, which arose in solving a lincar programming
problem by the simplex method.

N

tableau represent?

X X, X4 X4 X5 Xg X

0 = & 0 1 0 o 4
0 3 z 1 0 1 -1 10
1 3 3 3 0 0 : 4
0 =L = -1 0 0 2 12

(b) Perform one operation of the simplex algorithm on the tableau. What basic
feasible solution does this new tableau represent?

R =y

e
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X X, X4 u v w -
1 5 2 0 3 20
0 2 4 1 0 -4 6
0 2 —1 0 1 3 12
| 0 -5 -3 0 0 3 12

. (a) Identify the basic feasible solution and basic variables in this tableau.
(b) Compute the next tableau using the simplex method.
(c) Identify the basic feasible solution and basic variables in the tableau in (b).

In Exercises 10-23 solve the indicated linear programming problem using the
simplex method.
. - 10. Example 4, Section 1.1.
: 11. Example 7a, Section 1.1.
' 12. Example 7b, Section 1.1.
| 13. Example 10, Section 1.1.
' V14, Exercise 4, Section 1.1.
115. Exercise 5, Section 1.1.
16. Exercise 7, Section 1.1.
L 17. Exercise 9, Section 1.1.
18. Exercise 2, Section 1.5.
! 4 19, Maximize z = 2x; + 3x, — x4
subject to
X, +2x;— x3< 6
X — 3%, —3x, <10
=20, j=1,2,3.

. Maximize z = x; + 2x, +x; + x,
subject to

2x;+ x,+3x3+ x,< 8

2%y + 3x, +4x, <12

3x;+ x, + 2x,4 <18
x>0, j=1,2,3,4.

e

B 21. Maximize z = 5x; + 2x, + x5 + x,

d subject to

s 2x; 4+ X, +x3+2x,< 6
'i 3x, + x4 <15
-f{ Sx, +4x,  + x,<24

20, j=1,2,3,4.

e

=i
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S
W]

. Maximize z = —x, + 3x, + x5
subject to
—xX; +2x, —Tx53< 6
x,+ x5 —3x, <15

= 0, j=1,2,3,

23. Maximize z = 3x; + 3x, — x5 + x,
subject to

2 =Xy — x4+ x, < 2
Xy =Xy txy— x, < 5
3x, + X, + 5x, < 12

X2 0, j=1,234

24. Supposc a linear programming problem has a constraint of the form
3xy + 2x, + 5x5 — 2x, = 12.

Why can we not solve this problem using the simplex method as described up
to this point? (In Section 2.3 we develop techniques for handling this situation.)

2.2 DEGENERACY AND CYCLING (OPTIONAL)

In choosing the departing variable, we computed the minimum 6-ratio.
If the minimum #-ratio occurs, say, in the rth row of a tableau, we drop
the variable that labels that row. Now suppose that therc is a tic for
minimum #-ratio, so that several variables are candidates for departing
variable. We choose one of the candidates by using an arbitrary rule such
as dropping the variable with the smallest subscript. However, there are
potential difficulties any time such an arbitrary choice must be made. We
now examine these difficulties.

Suppose that the #-ratios for the rth and sth rows of a tableau are the
same and their value is the minimum value of all the #-ratios. These two
rows of the tableau are shown in Tableau 2.11 with the label on the rth
row marked as the departing variable. The 6-ratios of these two rows are

b,/a, =by/a.
Tableau 2.11

Xy

ar. n+m

X gy dyz 2y Qs nm b
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Tableau 2.12
X1 Xo e Xt Kaem
-\-g arl/arj arZ/arj 1 ar,n+m/arj br/arj
X | o® . w0 v b, — a,;-b./a,

When we pivot in Tableau 2.11, we obtain Tableau 2.12, where *
indicates an entry whose value we are not concerned about. Setting the
nonbasic variables in Tableau 2.12 equal to zero, we find that

x; = b,/a,;

and

i, ” by~ sj” b’/aff = asi(bs/asj - br/arj) = 0.

Consequently, the tie among the g-ratios has produced a basic variable
whose value is 0.

DEFINITION. A basic feasible solution in which some basic variables
are zero is called degenerate.

ExaMPLE 1 (DEGENERACY). Consider the linear programming problem
in standard form

Maximize z = 5x; + 3x;
subject to
Xy — Xy <2
2x, + x, <4
—3x, +2x,<6

XIZO, x220.

The region of all feasible solutions is shown in Figure 2.3. The extreme
points and corresponding values of the objective function are given in
Table 2.1. The simplex method leads to the following tableaux. In Tableau
213 we have two candidates for the departing variable: x, and x, since
the 6-ratios are equal. Choosing x5 gives Tableaux 2.13, 2.14, 2.15, and
2.16. Choosing x, gives Tableaux 2.13a, 21.4a, and 2.15a. Note that

Tableaux 2.15a and 2.16 are the same except for the order of the con-
straint rows.
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TABLE 2.1

LExtreme point Value of z = 5x; + 3x,

©,0 0
2,0 10 i1
0,3) 9 i

2 24 B2

7T 7

(

Tableau 2.13

Tableau 2.14
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10

Xs

X3

X2

X1

Tableau 2.15

Qe Zle gl | g~
< < | =i e i | e e
|
<
% wle o e = [ T
g i | oo -|o oY
|
Ky o e -ol| o o
A = |l ool e )
o4
) )
n b
o Y
3 ]
-~ "y @ - N =™ o ) < »n
RoR R m R oOR R = LU
- [

wnle

e

X3
1
Xs

Tableau 2.14a

Tableau 2.15a
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The optimal solution is
Xy =7, 12x— ot

with the optimal value of the objective function being
z=%,
The slack variables have values
Xi=2 x,=0, x5=0.

What is happening geometrically? We start with the initial basic feasible
solution as the origin (0,0), where z = 0. If we choose to replace x, with
x;, we move to the adjacent extreme point (2,0), where z = 10 (Tableau
2.14). Now we replace x, with x, and remain at (2,0) (Tableau 2.15).
Finally we replace x; with x; and move to (3, %), where z = &, This is
our optimal solution (Tableau 2.16).

Alternatively, because the §-ratios arc equal we could replace x, with
x;. The pivot step with this choice again moves us from (0,0) to (2,0),
where z = 10 (Tableau 2.14a). However, at the next stage, x,, which has
value 0 and is the degenerate variable, is not a departing variable. Instead,
x5 is the departing variable, and we move immediately to the optimal
solution (Tableau 2.15a) at (£, 2), A

In general, in the case of degeneracy, an extreme point is the intersec-
tion of too many hyperplanes. For example, degeneracy occurs in R* when
three or more lines intersect at a point, degeneracy occurs in R* when
four or more planes intersect at a point, and so on.

Cycling

If no degenerate solution occurs in the course of the simplex method,
then the value of z increases as we go from one basic feasible solution to
an adjacent basic feasible solution. Since the number of basic feasible
solutions is finite, the simplex method eventually stops. However, if we
have a degenerate basic feasible solution and if a basic variable whose
value is zero departs, then the value of z does not change. To see this,
observe that z increases by a multiple of the value in the rightmost column
of the pivotal row. But this value is zero, so that z does not increase.
Therefore, after several steps of the simplex method we may return to a
basic feasible solution that we already have encountered. In this case the
simplex method is said to be cyeling and will never terminate by finding an
optimal solution or concluding that no bounded optimal solution exists.
Cycling can only occur in the presence of degeneracy, but many linear
programming problems that are degenerate do not cycle (see Example 1).

Examples of problems that cycle are difficult to construct and rarely
oceur in practice. However, Kotiah and Steinberg (see Further Reading)

‘2
{
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have discovered a linear programming problem arising in the solution of a
practical queuing model that does cycle. Also, Beale (sec Further Reading)
has constructed the following example of a smaller problem that cycles

after a few steps.

ExXAMPLE 2 (CYCLING).
problem in canonical form.

Maximize

subject to

1 11
2% T 2X2 T

1 3
2% T 2% —

X1

2.2 Degeneracy and Cycling (Optional)

1
X3+ x4

>0,

2x5 + x4 + x5

+ X,

oo

Consider the following linear programming

z = 10x, — 57x, — 9x, — 24x,

Using the simplex method we obtain the following sequence
Tableau 2.17
1)
X X3 Xs X7
“lx| @ -3 1
X6 g = 0
Xq 1 0 0
—-10 9 0 0
Tableau 2.18
x1 X3 X5 X7
x 1 -1 -5 2
| x4 0 2 -1 0
Xq 0 5 -2 1
0 —53 —41 20 0
Tableau 2.19
1)
X X3 X5 Xq
< ] *1 1 @ =3 G
X2 0 b atl 3 0
X7 0 - H 0 1
0 ) 2 53 0
2 4

of tableaux.
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Tableau 2.20
i
X Xy Xy _x4 X5 Xq X
ny 2 0 1 -8 -3 4 0|0
| x| - 1 0 @ L s 0o
5 1 0 0 0 0 0 1|1
29 0 0 -8 —I5 93 0|0
Tableau 2.21
| l
3 X A3 X4 Xs Xq X
’ || -2 4 i 0 @ -3 0o
x, | —% i 0 1 i -3 0|0
x; 1 0 0 0 0 0 1|1
20 9 0 0 -3 u 010
Tableau 2.22

|
~
o

X5

= ot

|
)

%)
Nel
(%)
0o
—_

Tableau 2.23

—_ Wl Wl

—10

simplex method has cycled.

Method.

Observe that Tableau 2.23 is identical to Tableau 2.17, and, thus, the

Computer programs designed for large linear programming problems
provide several options for dealing with degeneracy and cycling. One
A option is to ignore degeneracy and to assume that «cycling will not occur.
1 Another option is to use Bland’s Rule for choosing entering and departing
| | variables to avoid cycling. This rule modifies Step 3 and 4 of the Simplex

A
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Bland’s Rule

1. Selecting the pivotal column. Choose the column with the smallest
subscript from among those columns with negative entries in the objective
row instead of choosing the column with the most negative entry in the
objective row.

2. Selecting the pivotal row. If two or more rows have equal f-ratios,
choose the row labeled by the basic variable with the smallest subscript,
instead of making an arbitrary choice.

Bland showed that if these rules are used, then, in the event of degeneracy,
cycling will not occur and the simplex method will terminate.

ExaMPLE 3. Referring to the tableaux from Example 2, note that
Bland’s rule affects only the choice of entering variable in Tableau 2.22.
Applying the rule and rewriting Tableau 2.22 with the new choice of
entering and departing variables, we obtain Tableau 2.23a.

Tableau 2.22
l
Xy X X3 Xy X5 Xg P
x5 -4 8 2 0 1 -9 0|0
|l & - =+ 1 0 1 0o
X5 1 0 0 0 0 0 1)1
=22 93 21 0 0 —24 0 0

Tableau 2.23a
l
X X, X3 X4 Xs Xg Xq
oy 0 -4 -2 8 1 -1 0 |0
7 1 -3 -1 2 0 2 0 |0
| x 0 3 O -2 0 -2 1 |1
0 27 -1 44 0 20 0 |o

We perform the pivot step to obtain Tableau 2.24a, which represents an
optimal solution. The cycling has been broken.

Tableau 2.24a

X X, X3 X4 X5 X p
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2.2 EXERCISES

In Exercises 1-6 solve the indicated linear programming problem, noting where
degeneracies occur. Sketch the set of feasible solutions, indicating the order in
which the extreme points are examined by the simplex algorithm.

1. Maximize z = 6x; + 5x,
subject to

3x, —2x, <0
3x, +2x, <15
x;20, x,>20.
2. Maximize z = 5x; + 4x,
subject to
x;+2x,<8
x;—2x,<4
3x; +2x, <12
x; 20, x,>0.
3. Maximize z = 3x; + 2x, + 5x,
subject to
2x;— x;+4x; <12
4x; + 3x, + 6x5 <18
x; 20, x,20, x3=0.
4. Maximize z = 5x; + 8x, + x4
subject to

X1+ x,+ x3<7

N 2x, + 3xy + 3x, <12
| 3x; + 6x, + 5x, < 24
x 20, x,20, x3>0.
5. Maximize z = 6x; + 5x,
subject to
: 4x, +3x, < 19
X;— x, <3
Xy —2x,<2
3x; +4x, < 18

x;20, x,>0.

™,

e
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|

6. Maximize z = 5x; + 3x,
subject to

i
/ 2x, +x, <6
! 2x1 — X, = 0
X;— X, <0
x; 20, j=12.
7. If a degeneracy arose in any of the exercises above, use all choices of the
departing variable.

In Exercises 8 and 9,
(a) Show that cycling occurs when solving the problem using the simplex

method. |
(b) Use Brand’s Rule to terminate cycling and obtain an optimal solution, if one :'

exists. (|

8. Minimize z = —x; + 7x, + x5 + 2x, :
subject to

X+ Xyt x3+ Xyt Xxs =1
| 1 11 ) —
_ X, — 35Xy — 3%3 + 9xy + Xx¢ =0
1
N 1 3 1 —

Xy — 3Ky — 35Xzt Xy +x,=0

xj20, j=1,...,7

(due to K. T. Marshalt and J. W. Suurballe).
9. Minimize z = — 2x; — 2x, + 3%3
subject to

! 3 32 24
' 5%, — FX T 5X3 tx, =
1 9 3
X — 3%t 35X + X5 .

Xy +x;,=1

]‘

1

1

f

§ o= St 5% + X =
|

¥ %20, j=1,..,7

(due to K. T. Marshall and J. W. Suurballe).

2.3 ARTIFICIAL VARIABLES

In the previous two sections we discussed the simplex algorithm as a
method of solving certain types of linear programming problems. Recall
that we restricted our discussion to those linear programming problems
that could be put in standard form, and we considered only those prob-
lems in that form that had a nonnegative right-hand side. That is, we have .
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