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Abstract

The main purpose of these notes is to understand what Z,Q,R,C are, as well as their
polynomial rings. The official textbook this year is Shahriri, Algebra in Action, AMS.
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0 Preliminaries

In this section we briefly recall a few topics you probably know already. But even if you “know
too much”, it’s good to agree on notation and terminology, so that we are all on the same page.

0.1 Natural numbers, induction, and primes

You are probably all familiar with the infinite set of natural numbers (also known as “nonnegative
integers”)
N={0,1,2,3,...,n,n+1,...}

It is usually stated in textbooks that natural numbers “come from Nature”, whence the name
“patural”. Leopold Kronecker' once stated “God created the integers; all else is the work
of man.”. This is not entirely true: To accept them, three important abstraction steps are
necessary. These steps are non-trivial, as throughout the history of mankind, not all populations
have achieved or accepted them:

e the notion of cardinality, i.e. the realization that two finite sets in bijection with one
another have something in common; whence the names of numbers. This is not universal:
Even today, the Piraha people in Amazonas, Brazil, have no names for numbers, and have
no linguistic way of expressing exact quantity, not even “one”. ?

e the notion of zero, as the cardinality of an “empty set”. The ancient Greeks had no symbol
for zero, for example; Mayas did have a symbol for zero around the year 36 BC, using it as
placeholder in their base-20 numerical system; arithmetic operations with zero were first
introduced by the Indian mathematician Brahmagupta®, around 650 AD.

e the existence of an infinite set, that is, a set that can be in bijection with a proper subset
of itself. The bijection in this case is the successor map, that is, the map that adds one to
each element; so an equivalent way of formulating this principle is, “the belief that every
number has a successor”. Once again, this intuition is not universal, and in logic there is
a movement of logicians from around 1900, called (strict) finitists, who rejected it.

Given two natural numbers a and b, we say that “a divides b” (or equivalently that “a is a
divisor of b”, or equivalently that “b is a multiple of a”) if there exists a natural number k such
that

b=k-a.

Prime numbers are the natural numbers with exactly two distinct divisors (so 1 is not prime!):
2,3,5,7,11,13,...

Definition 1. Given two natural numbers a and b, their greatest common divisor, denoted by
ged(a, b) is the largest integer that divides both a and b. It exists as long as a, b are not both
0. Two natural numbers a, b are called coprime if ged(a,b) = 1.

Example 2. If p is prime, then it has only 1 and p as divisors. Thus for any natural number n

| p if p divides n,
ged(p,n) = { 1 otherwise.

'H. M. Weber’s memorial article, Leopold Kronecker, in Jahresbericht der Deutschen Mathematiker-
Vereinigung, Vol. 2 1891-92

2Frank et al., Number as a cognitive technology: Evidence from Pirahd language and cognition, Cognition 108
(2008), 819-824.

3Wallin, Nils-Bertil,“The History of Zero”. YaleGlobal online, 19 November 2002



Induction is a standard technique to prove a statement for infinite subsets of N. It is based
on the fact that every natural number is obtained from 0 by adding 1 sufficiently many times. So
if we show that a property P holds for zero and is maintained when we move from any number
to its successor, then P holds also for one, for two, for three.... and eventually is shared by all
natural numbers.

Formally, a proof by induction consists of two parts:

o (“Basis”) We prove that the statement holds true for a specific integer ng.

o (“Step”) We prove that, if there exists a natural number n such that the statement holds

for n, then the statement must hold also for n + 1.
Once again, the validity of the statement for ng implies the validity for ng + 1, which in turn
implies the validity for ng+2, and so on: A domino effect, which eventually proves the statement
for all integers n > ng. If our basis was ng = 0, then we end up proving the statement for the
whole of N.

Example 3. Let us prove by induction that
n+1
2
Zi: <n—2|— > for all n € N.
i=0

e (“Basis”) For n = 0, the formula above boils down to 0 + 1 = (g), which is correct. This
brings good luck!
e (“Step”) Let us assume that Z”+Ol 1= (”;2) holds true for some n. Then

n+2 n+1
. | n—+ 2 n42 n+4 2 n+3
Zz:(n+2 Z:n+2+<2>=<1>+<2>:<2>.
=0
Non-Example 4. Here is a “fake proof” by induction that

ni:l . (2n+3)?

1= — s for all positive integers n.
=0
Let us assume that E"H W holds true for some n. Then
"if 2 +”§ L () R AP0 425 (2nt5P  (2Ant?) +1)2
i=(n i = (n = = = .
8 8 8 8

What did we do wrong? Induction consists of two parts, a step and a basis... The basis is not
superfluous! We need a domino tile where our domino effect can start.

Remark 5. A common mistake is to memorize the induction step as follows, “Let us assume
that the statement holds for all n; then let us prove it for n + 17. This makes no sense: If we
already know that the statement holds for all n, then we are done!, no need to think about n+ 1.
That’s not how induction works. What instead we are assuming is much less, namely, that the
statement holds for one specific n; from there we want to be able to say the same thing about
its successor, n + 1.

We should pay special attention to whether our induction step is imposing extra conditions
on n. If the induction step works only for n > ng, then the basis for the induction should be its
verification at ng, and not at 0.



Example 6. Let us prove that n? — 5n 4+ 6 > 0 for all integers n. Let’s assume it for n; then
n+1)*=5(n+1)+6=mn*+2n+1)—5n—5+6=(n>—5n+6)+2n—4>2n —4.

Now to conclude we would like to say that 2n —4 > 0. But this is true only when n > 2. So we
are not done yet; it is incorrect for us to “make the domino tiling start” at n = 0 because as far
as we know, the validity at 0 might not imply the validity at 1. So we proceed as follows:
e First, we ask ourselves whether the claim holds true for n = 2, which is the correct
induction basis. Since 22 — 10 + 6 = 0, the answer is “yes”. Together with the induction
step, this does prove

“n? —5n 4+ 6 > 0 for all integers n > 2.”

e This is not what we were asked to do, but almost: we are left with only finitely many cases
to consider!, namely, n = 0 and n = 1. We can check them by hand: for n = 0 we have
0—0+6>0, for n =1 we have 12 — 5 4+ 6 = 0. This concludes the proof.

Non-Example 7. Here is a “fake proof” (by induction on the number n of students) that
“all students will receive the same grade in the final”.

For n = 1, we are considering a class consisting of only one student, so the claim is clear.
Now suppose we have proved the claim for classes with n students. Let C be any class with
n + 1 students. Let z,y be any two students enrolled in the class, and let z be any other
student. Consider S\ {z}: this is a set of n students, so we can apply the inductive assumption:
Everybody in S\ {z} is going to get the same grade. In particular, y and z will get the same
grade. Analogously, by the inductive assumption everybody in S\ {y} will get the same grade,
so in particular x and z. Summing up, x, y, z will all get the same grade. But then any two
students z,y will get the same grade. What is wrong here?

(Hint: If in a proof you pick three different elements from a set, then you are implicitly
assuming that the set has at least three elements. Note that if we have a class of 3 students,
and any pair of them gets the same grade, then indeed they all get the same grade...)

There is a variant of induction which sometimes is easier to use than the one above. It is
called strong induction, or sometimes “complete’ or “generalized induction”. Essentially, it
is just normal induction plus “bookkeeping”, i.e. keeping track of everything you have proven
before. It consists of two parts:

e (“Basis”) Prove a statement for a specific integer ny.

o (“Step”) Prove that, if there is a natural number n such that the statement holds for every

natural number k such that ng < k < n, then the statement must hold also for n + 1.

Let us use the shortening P(n)for “the property holds for n”. It is easy to see how generalized
induction works: First of all, P(ng) implies P(ng+1). Now that we know P(ng) and P(no+1),
we can infer P(ng 4+ 2). But then we know P(ng) P(no + 1), and P(ng + 2), which together
imply P(ng + 3). And so on: Another domino effect, which results in a proof of the statement
for all integers n > ng. The difference with classical induction is that instead of proving

P(n) = P(n+1),

where P(n) stands for “the property holds for n”, we keep track at each step of what we have
proven already and show

[P(n) and P(n —1) and P(n —2)... and P,,] = P(n+1).



Proposition 8. Any integer n > 2 can be written as product of primes.

Proof. The statement is true for n = 2, because “2 = 2” writes 2 as products of primes. Now let
n be an integer, and suppose the claim has already been proven for any integer in {2, 3,...,n—1}.
If n is prime, then

n=n

is a valid way to write down n as a product of primes, and we are done. If n is composite, then
n=mni-ny,

with 2 < n; < n (for i = 1,2). By strong induction, both n; can be written as product of primes.
But then so can n. O

Corollary 9 (Euclid). There is no largest prime.

Proof. Let p1,...,p, be the complete list of the first r primes. Set n € + p1p2 -+ pr. Let p be
any prime factor of n; the existence of p is guaranteed by Proposition 8. Were p belonging to
{p1,...,pr}, then

1 = pb1-pPr—"n

would be a difference of two multiples of p, so 1 itself would be a multiple of p, a contradiction.
Thus p does not belong to {p1,...,p,}. In particular, p is a prime larger than all of py,...,p,.
This proves that there is no largest prime. O

Remark 10. In some textbooks, the theorem above is often misquoted as follows: given the set
of the first k primes, their product plus one is a much larger prime. This is a wrong argument:

14+(2-3-5-7-11-13) = 30031
is not prime, for example, because it is divisible by 59.

Remark 11. The argument of Corollary 9 can be adapted to prove a quantitative statement:
Namely, that the number of primes not larger than n is at least log, logy n. In fact, with modern
techniques we can estimate the growth of prime numbers better: in 1896, Hadamard and de-
la-Vallee-Poussin independently proved that the number of primes < n grows like ﬁ; an
elementary proof was fund in 1948 by Selberg and Erdos, again independently. This statement
goes under the name of PNT (Prime Number Theorem).

0.2 Euclidean division, unique factorization, and the Euclidean algorithm

Theorem 12 (Euclidean division). Let n,d be natural numbers, d # 0. There exist natural
numbers (q,r) such that

@n:qd+r,
@0§r<d.

In addition, the pair (q,r) is uniquely determined by (n,d).

Notation. The number ¢ is called “quotient of the division of n by d”; the number r is
called “remainder of the division of n by d”. Sometimes d is called “divisor”. This explains why
one chooses the letters ¢, 1, d.



Proof. Let us prove existence first. The claim is clear for n < d (by choosing ¢ “0and r& n).
The claim is also clear for d = 1 (by choosing ¢ “pandr¥ 0). So the interesting case is

n>d>2.

We proceed by strong induction on the first component of the pair (n,d) (the basis case n = 0
being already covered by the n < d case of the discussion above). Consider ny = n — d. Clearly
n1 € N (we are in the case n > d) and n; < n. By strong induction, the existence part of the
theorem holds for the pair (n1,d): So we can find natural numbers ¢, 71 such that

ni=qd+rand 0 <ry <d.

But then
n=ny+d=(q +1)d+7r, with0<r <d

is the desired “division of n by d”.
As for uniqueness, say n = qd +r = ¢'d+ ', with 0 <r < d and 0 <7’ < d. Now:
e ifg=¢ ,thenr=n—qgd=n—q¢d=r1",s0 (q,7) = (¢',r') and we are done.
e if ¢ > ¢/, then q > ¢/ + 1. Multiplying by d we get qd > ¢’d + d. Hence

dd+r'=n=qd+r>q¢dd+d+r,

whence ' > d + r, a contradiction because r > 0 and ' < d.
e symmetrically, if ¢ > ¢ one gets r > r’ + d, contradicting ' > 0 and r < d. O

Here is a famous result by Euclid, with a proof that uses strong induction three times. We
will see a much simpler proof later.

Lemma 13 (Euclid). Let a and b be natural numbers. If a prime number p divides ab, it divides
either a or b.

Proof. * We proceed by strong induction on the minimum of the pair {a,b}. Up to relabeling,
we can assume a < b, so that a is the smallest of the pair. If « = 0, or a = 1, then the claim is
clear. So we assume a > 2 and distinguish two cases: either a is prime, or not.

e Suppose a is prime. Let p be a prime that does not divide a but divides ab for some b.
Via Theorem 12, write p = ag + r with 0 < r < a. Since ab = pc for some integer ¢, we
have that

ab = pc = (aq + r)c = acq + re.

This implies that rc = a(b—cq), so the prime a divides re. Since r < a, by strong induction
the theorem holds for the pair {r, c}; that is, when a prime divides rc, it divides either r
or c. But the prime a divides rc and does not divide r, because r < a. Hence, a divides c.
Writing ¢ = ad for some integer d, we get

ab = pc = pad,

and canceling a we get b = pd. So p divides b.

e Suppose a is not prime. Then a = d; - do, with both dy,ds < a. Let p be a prime that
does not divide a, and divides ab for some b. Then p divides neither d; nor ds (or else it
would divide a), but

p divides didsb.

4Proof due to Barry Cipra, math.stackexchange.com/questions/15681173/proof-of-euclids-1lemma, 2015


math.stackexchange.com/questions/1581173/proof-of-euclids-lemma

By strong induction (since d; < a) the statement of the theorem holds for the pair {d;, d2b}:
so either p divides d; (which is false), or p divides d2b. Hence,

p divides do b.

By strong induction (since da < a) the statement of the theorem holds for the pair {da,b}:
so either p divides dg (which is false), or p divides dob. Hence, p divides b. O

Lemma 14. Let ay,...,a, be natural numbers. If a prime number p divides their product, then
p divides (at least) one of {ai,...,an}.

Proof. The case n = 2 is Lemma 13. By induction, suppose p divides a1 - ... - ay - ap+1. Call
b ay ... an. Since p divides b - an41, by Lemma 13 either p divides a,41, or p divides b, in
which case by inductive assumption p divides one of {a1,...,a,}. O

Theorem 15 (Unique Factorization). Any integer n > 2 can be decomposed as product of
weakly-increasing primes, and such decomposition is unique.

Proof. We already know that n can be written as product of primes by Proposition 8; so up to
reordering them in weakly-increasing order, the existence of such decomposition is clear. The
hard part is to prove uniqueness. Suppose

pr-p2- ... ' Pr=m=q1-q2" ... (s,
with p;, ¢; primes, listed so that
pr<p2< ... <pp and @ <g@< ... <gs

Since p; divides the product of the g;’s, by Lemma 14 it must divide at least one of the g;’s.
Because they are both primes, this actually means that p; is equal to one of the g;’s. Since g1
is the smallest of the g;’s, this means that

P12 q1.

Symmetrically, ¢g; divides the product of the p;’s, so it must divide one of them by Lemma 14.
By primality, ¢; is equal to one of the p;’s, so in particular p; < ¢;. Thus p; = ¢1. But then we
can cancel p; and g1, and proceed recursively. Because

p2: ... Pr=4q2" ... (s,
we get that ps = ¢9; and so on. It follows that r = s and p; = ¢; for each q. ]

The unique factorization (Theorem 15), also known as “fundamental theorem of arithmetics”,
provides a way to find the ged of two natural numbers a and b: We can decompose a and b into
primes, and then collect together all common factors.

Corollary 16. Suppose a =p{*- ... -pp" -pZTf poand b=pht - ... -pg" -qi’fll s
are decompositions into distinct primes, so that {pp+1,...,0r} NV {qn+1,---,qm} = 0. (Here each
ai, b; and ¢; is a positive integer.) Then,

ged(a, b) = plmin(al,bl) . p21”111n(027b2) o _p;;ﬂin(ambh).

Example 17. Since 168 =23 -3 -7 and 60 = 22 -3 - 5, then

gcd(168,60) = 22 -3 = 12.



This method seems quick, but it isn’t. The problem is that we have hidden the difficulty
under the carpet: Given 168, how can you find its prime factors quickly? In general, factoring
requires a huge amount of computational time. Many cryptography systems (e.g. RSA) that
keep your emails and credit cards secure, are based on the fact that a product of two distinct
primes uniquely determines the two primes, but it takes really long to figure them out from the
product if you do not have extra information. It turns out however that we can write down an
algorithm to find the ged that is much quicker than factoring.

Lemma 18. Let n,m be positive integers. Let n = qm +r, with 0 <r <m. Then
ged(n, m) = ged(m, r).

Proof. Set di £ ged(n,m) and dy £ ged(m, 7). Since d; divides both n and m, it divides also
r =mn —qm; so it’s a common divisor of m and r. So d; < d2. On the other hand, do divides m
and 7, so it divides also n = gm -+ r. So it’s a common divisor of n and m. So do < dj. O

Algorithm 19 (Algorithm to compute the GCD). INPUT: a, b positive integers, with b < a.
def ged(a,b):
Do the Euclidean division a = ¢b + r.
if r=20:
return b.
else:
return ged(b, 7).

The algorithm is recursive. Termination is ensured by the fact that at each iteration, the
remainder decreases. Eventually, it will get to zero: but if the remainder of the division of = by
y is zero, it means that ged(z,y) = y.

Example 20. Let us compute ged(168,60) using the Euclidean algorithm.

168 =2-60+ 48
60 =1-48+12
48 =4-12+0.

So the ged(168,60) = ged(60,48) = ged(48,12) = 12. Note that we did not have to factor 168.

0.3 Modular arithmetics
Definition 21. Let m > 2 be an integer. Let

def

T £{0,1,...,m —1}.

Modular addition and modular multiplication are the two operations on Z,, defined as follows:

def

adb
a®b

the remainder of the division of a + b by m

£ the remainder of the division of ab by m.

Modular operations behave in a very similar manner to usual arithmetic operations; later in
the course, once we introduce quotients rings, we will understand why.

Lemma 22. Both @ and ® are associative: That is, for each a,b,c,

(adb)dc=a®(bdc) and (a©b)Oc=a® (bOc).



Proof. We prove it only for @; the © case is analogous and left as exercise. By definition, a ® b
is the remainder r; of the Euclidean division

(a4+b)=gm+ry, with0<r <m.
So (a @ b) @ c is the remainder 7o of the Euclidean division
r1 4+ c = qgom + ro, with 0 < 7y < m.
Sorg=ri+c—q@m=(a+b—qm)+c—qgm=(a+b+c)— (g1 + g2)m; hence,
(a+b+c)=(q1+ q)m+ro,

and since ro < m, the expression above is a Euclidean division. In other words, ro is the
remainder of the division of a + b+ ¢ by (¢1 + ¢2)-
On the other hand, b @ c is by definition the remainder r3 of the Euclidean division

(b+c) =qgzm +rz, with 0 <rz < m.
So a@® (b c) is the remainder r4 of the Euclidean division
a+r3=qm+ry, with 0 <rgy <m.

But then ry =a+r3—qgm=a+ (b+c—qgsm)—qgm = (a+b+c) — (g3 + q4)m; and as above,
we get that
(a+b+c)= (g3 +q)m+ry, with0<rg<m

is also a Euclidean division. By the uniqueness of the Euclidean division, it follows that ro = 74,
0o (adb)dec=ad (bdc). O

Lemma 23. The operation ® distributes ®: That is, for each a,b,c,
(a®b)Oc=(a®c)® (bOc).
Proof. As above, a ®b o r1, where
(a4+b)=gm+ry, with0 <7 <m.
In turn, (a ®b) © ¢ = ry, where
ric = gom + ro, with 0 < ry < m.

In particular, ro = ric — ggm = (a + b — gym)c — gam = (ac + be) — (cq1 + g2)m. Since r9 < m,
we see that rg is the remainder of the Euclidean division of (ac 4 bc) by m.

Now let 73 = a ® ¢ and 74 = b ® ¢ be the remainders of the Euclidean division by m of ac
and bc, respectively. Clearly, r3 + r4 will be the remainder of the Euclidean division by m of
(ac+ bc). But then rs + 14 = ro. O

Remark 24. An important difference between modular arithmetics and usual arithmetics, is
that in modular arithmetics sums and products of nonzero integers can be zero. For example,

in Zg we have
165 =0.
203 =0.

10



Proposition 25. Let m > 2 be a natural number. The set Z,, with the operation of modular

addition satisfies the following four properties:

(a) Closure. If a,b are in Z,,, so is a ® b.

(b) Associativity. If a,b,c are in Zp, a® (bdc) = (adb) ®c.

(c) Identity. There is a unique element 0 in Z, such that for every a in Zy,, a®0=a=0Da.

(d) Inverses. For every a in Z,, there exists a unique b in Z,, with the property that a ® b =
0=bDa.

A natural question is: Which elements of Z,, are “invertible with respect to modular multi-
plication”? For example, in Z5 the equation

20x=1

has a solution, namely, © = 8; whereas it is easy to see (by checking all fifteen cases) that

JOzx=1
has no solution. Going further,

40z=1
has a solution, namely, x = 8; whereas

o50zr =1

has again no solution. How does it work?

Proposition 26. Let m > 2. Let a € Zy,.
The equation a © x = 1 has solutions x € Z, if and only if ged(z,m) = 1.

Proof. Both implications follow from Bezout’s theorem. In fact:
e Suppose a ®x = 1 has a solution x € Z,,,. This means that in Z, the Euclidean division of
ax by m has remainder 1. Thus there is a natural number ¢ such that

ar =qm+ 1.

In particular, the equation ax — my = 1 has solutions in N, so by Bezout’s theorem
ged(a,m) = 1.

e Conversely, suppose ged(a,m) = 1. Then by Bezout’s theorem ax — my = 1 has integer
solutions. Since ax > 1 and m > 1, from ax — 1 = my we see that the ‘integer solution’ y
cannot be negative, so it is a natural number. Thus ax = my+ 1 is an identity in N. Since
0 < 1 < 2 < m, such identity coincides with the FEuclidean division of ax by m. Thus
a®x=1in Z,,. ]

Recall that two natural numbers u, v are called coprime if ged(u,v) = 1.

Proposition 27. Let m > 2 be a natural number. The set U, of numbers in Z,, coprime with

m, with the operation of modular multiplication, satisfies the following four properties:

(a) Closure. If a,b are in Uy, so is a ®b.

(b) Associativity. If a,b,c are in Uy, a® (b&c¢) = (a D b) & c.

(c) Identity. There is a unique element 1 in Uy, such that for every a in Uy, a®1=a=10a.

(d) Inverses. For every a in Uy, there exists a unique b in Uy, with the property that a © b =
1=b0Ga.

11



Proof. Placing some factorization of a next to some factorization of b yields some factorization of
ab. By the Unique factorization theorem, in the previous sentence we may replace each “some”
by “the”. Thus if @ and m have no common prime factors, and b and m have no common prime
factors, then ab and m have no common prime factor. This shows the first property. The second
property is true for all a,b,c in Z,, (whether coprime with m or not), by Lemma 22. For the
third property, existence is obvious. To show uniqueness, suppose there is a z such that for all
elements a of U,,, a®z = a = z®a; then in particular 1®z = 1, but at the same time 1® 2z = z;
hence 1 = z. As for the last property, existence is by Proposition 26. To show uniqueness,
suppose there is a w such that a ©w =1 =w ® a. Then

w=woOl=wo(a®b)=(woa)©b=10b=h. O

0.4 Functions and Quotients. The sets Z, Q and 7Z,, as quotients
Let X,Y be any two sets. Recall that their Cartesian product is defined by

X x Y £ {(z,y) such that z € X,y € Y}.

Definition 28. A function f: X — Y consists of two sets X, Y and a subset F' C X xY, such
that for each element x € X there is always exactly one element y of Y for which (z,y) € F.
Usually we denote this y by f(x), and we say it is the image of z (under f). We also call X
(resp. Y) the domain (resp. the codomain) of the function. The image of the set X is the set
Im X & {f(z) such that z € X}.

Functions are often described by a formula that tells us how to find f(z) given z. For
example: Given any set X, the identity function on X (denoted by idx) is the function whose
output is always identical to the input. In this case, our notation to describe the function is

dx: X — X
T —z.

Sometimes one does not have an explicit formula available, but one can still give a method to
associate x with its image: for example,

f*N —N
x +— the z-th prime number.

If no general pattern is available, we can always express f by specifying all its values:

f:{0,1,2} —{0,1,2}
0

— 1
1 —0
2 — 2.

Definition 29. A function f: X — Y is injective if for each x # 2’ one has f(x) # f(2').

We assume familiarity with logic and quantifiers (V, 3) and logical equivalence (contraposi-
tives, etc.) For example, it should be clear that an equivalent way to define injectivity is:

Ve, o' € X, f(z)=f(@') =2 =1".

Injectivity depends not only on the “formula”, but also on the domain involved. For example,
the function “first letter of” is injective on the set { Alba, Bruno }, but not injective on the set
{ Alba, Alice, Bruno }.
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Definition 30. A function f : X — Y is surjective if the image of X coincides with the
codomain Y; or in other words, if for each y € Y there is some x € X (not necessarily unique)
such that y = f(x).

Surjectivity depends not only on the “formula” for f, but also on the domain and the
codomain. For example, let £ be the set of even natural numbers:

f*N —N f*N —F i f:N\{0} — FE

is not.
T — 2z r — 2z ’ r — 2z

is not surjective,

Definition 31. A function f: X — Y is bijective if it is both injective and surjective. That is,
if for each y € Y there exists exactly one x € X such that y = f(x).

Given a function f: X — Y and a function g : Y — Z, their composite is the function
gof: X —Z
z — g(f(z)).
Proposition 32. Let f : X — Y be a function between two non-empty sets.
(1) f is surjective <= there exists g : Y — X (called “right inverse”) such that f o g = idy .
(2) f is injective <= there exists g : Y — X (called “left inverse”) such that go f = idx.
(3) f is bijective <= there exists g : Y — X (called “inverse”) such that g o f = idx and
fog=idy.
Remark 33. Before starting with the proof, note that two functions are equal when they have

same domain, same codomain, and they yield same outputs when given same inputs. So to
verify an equality of functions like go f = idy, both going from Y to Y, we’ll need to check that
go f(y) =idy(y) forally € Y.
Proof of Proposition 32.
(1), “=7. Define
g:Y —X
y +— some x such that f(z) =y.
(If there is more than one z such that f(z) = y, we simply choose one.) Then by con-
struction, fog(y) = f(x) =y for all y € Y. Hence f o g = idy.
(1), “<”. For each y € Y, we know that idy(y) = fog(y), so y = f(g(y)), which means
y€lmf.
(2), “=". Choose a point xy of X. Define

g:Yy — X
y = { the unique z such that f(z) =y, ify € Imf.

Then for all z in X, go f(z) = g(f(x)) =x. So go f =idx.
(2), “<=”. Suppose f(z) = f(z'). Applying g, and remembering that g o f = idx, we get
z=idx(z) =go f(z) = g(f(x)) = 9(f(z')) = go f(a') = idx (/) = 2",

(3), “=". This does not follow immediately from items (1) and (2), because a priori it could
be that the two ¢’s (right inverse and left inverse) are different. However, if f is bijective
we can simply define

g:Y —X
y > the unique x such that f(z) =y.

and it is easy to see that it does the trick.
(3), “<”. This follows from (1) and (2). (Why?) -

13



Relations and quotients

Definition 34. Let X be an arbitrary, non-empty set. An equivalence relation on X is a subset
R of X x X that satisfies the following properties:

RELI: (z,x) € R for all z. (“reflexivity”)

REL2: If (z,y) € R, then (y,z) € R. (“symmetry”)

REL2: If (z,y) € R and (y, z) € R, then (z,z) € R. (“transitivity”)

Definition 35. Let R be equivalence relation on a set X, instead of (z,y) € R we shall write
x ~ vy, and read it “x is in a relation with y”. The equivalence class of an element z of X is

— def

T % {y € X such that y ~ 2} < {y € X such that (z,y) € R}.

Example 36. On any non-empty set X, one can always put two “extreme” equivalence relation:
the first one is
Ry = {(z,y) such that z = y}.

Under this, any element of X is in a relation only with himself. So the equivalence classes are
as small as possible: They contain one element each.
The other extreme is
R1 =X x X.

Under this, any element of X is in a relation with everyone! So there is only one giant equivalence
class containing all elements.

Example 37. Let X be the set of students in your Algebra class. If we define
R = {(x,y) such that z,y are born in the same year}

this is an equivalence relation. You are in a relation with anybody who is born the same year as
you. If you view the student names as files, you can think of the equivalence classes as folders,
labeled by birthyear.

Example 38. Let N be the set of integers. let us define
R = {(a,b) such that a — b is even}.

This is an equivalence relation, because (REL1) a — a is even, (REL2) if a — b is even so is b — a,
and (REL3) if @ — b and b — ¢ are even, so is their sum a — ¢. This equivalence relation is called
congruence mod 2.

Non-Example 39. The empty relation R = {) is not an equivalence relation: It satisfies (REL2)
and (REL3), but not (REL1).

Non-Example 40. Let X = N. The relation
R = {(a,b) such that |a — b| < 5}

is not an equivalence relation: It satisfies (REL1) and (REL2), but not (REL3).

For a real-life analogy, “being close to” is not a relation of equivalence: if it takes less than 5
minutes to go from a to b, and it takes also less than 5 minutes to go from b to ¢, not necessarily
it takes less than 5 minutes to go from a to ¢! It could be that distances add up.
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Non-Example 41. Let X = N. The relation
R = {(a,b) such that a < b}
is not an equivalence relation: It satisfies (REL1) and (REL3), but not (REL2).

Definition 42. Let R be an equivalence relation on a set X. The quotient X / _ is the set of
all equivalence classes in X. In other words,

X/N = {7 such that z € X}.

By definition, two elements of X are equal in the quotient (i.e. T = 2’ in X / ) if and only
if they are in a relation with one another (i.e. x ~ z’).
Very often in mathematics, we have to define functions or operations on quotients. Here is
a general trick for that:
1. To define a function f : X/N — Y, we can simply define a function F': X — Y, and then
to check “compatibility with the quotient”, i.e. check that

r~a = F(x)=F().
2. To define an internal operation

SRVNESYNES

~ ~

we may simply define an operation
O: X xX — X,
and then check that O is compatible with the quotient, i.e.
r~ay~y = Oz,y) ~ 0, y).

The set Z as quotient and Bezout’s theorem

Example 43 (Z as quotient). The set Z of integers can be defined as follows: on X “NxN
we introduce the equivalence relation

(a,b) ~ (b)) <5 a4+ =a +b.

Then Z & X/N. By convention, we denote (a,0) simply by ‘a’ and (0, a) simply by ‘—a’.

The hint is: you should think of (a,b) as what you have always written as ‘a — b’. On the
set Z, we can define addition componentwise

(a,b) + (¢,d) = (a+ ¢, b+ d)

and multiplication as

(a,b) - (c,d) = (ac+ bd, ad + be).

Are these operations legitimate? if X = N x N, it is easy to see that the componentwise addition
from X x X to X is compatible with the quotient: if (a,b) ~ (a’,b) and (¢,d) ~ (¢/,d’), which
means that a +0 =ad +band c+d = +d, thena+c+¥b +d = d + + b+ d, which
means that (a +¢,b+d) ~ (a’ + ¢, b + d"). But what about multiplication?, if (a,b) ~ (a’,b)
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and (c,d) ~ (¢, d'), is it true that (ac+bd, ad+bc) ~ (a'd +0'd,a'd +b'¢’)? To check this, we
assume a + b =a’ + b and ¢+ d = ¢ + d, and we want to show

ac+bd+dd +bcd =ad+bc+dcd +bd.

The trick is to add to both sides of the equality above the quantity ac’ + bd’ + a’d + b'c, and
prove that on both sides you get as result 2(a’ + b)(¢’ + d). We leave this as exercise.

Now that we have Z available, we can extend some of the statements we had for N to Z, and
simplify some of the theorems:

Definition 44. Given a and b in Z, we say that “a divides b” (or equivalently that “a is a
divisor of b”, or equivalently that “b is a multiple of a”) if there exists an integer k such that

b=k-a.
The integers 1 and —1 are called units.

Definition 45. The absolute value |n| of an integer n is defined to be n itself if n > 0, and —n
if n < 0. In other words, going back to the original definition of Z as quotient, we define

(a,b)| € max{a —b,b— a}.

Theorem 46 (Euclidean division). For any pair (z,d) of integers, d # 0, there exists a unique
pair of integers (q,r) such that z=qd +r and 0 < r < |d|.

Proof. The claim is clear if z is a multiple of d, in which case r = 0. So without loss we may
assume that z is not a multiple of d. We distinguish four cases:
e If 2> 0 and d > 0, Theorem 12 allows us to conclude.
e If 2 > 0 and d < 0, we know how to divide z by —d, so z = q(—d) + r with ¢ € N and
0 <r < |d|. But then z = (—q)d + r is the desired division.
e If z < 0and d > 0, we know how to divide —z by d, so —z = gd + r with ¢ € N and
0 < r < |d|. But then
z=—qd—r=(—q—1)d+(d—r)

is the desired division, with remainder 0 < d —r < |d|.
e If 2 <0 and d < 0, we know how to divide —z by —d, so —z = ¢(—d) + r with ¢ € N and
0 < r < |d|. But then

z=qd—r=(q+1)d+(—=d—r)=(¢g+1)d+ (|d —r)
is the desired division, with remainder 0 < |d| —r < |d]. O

Theorem 47 (Unique Factorization for Integers). Any integer different than 0,1, —1 can be de-
composed as a unit times a product of weakly-increasing positive primes, and such decomposition
18 unique.

The next Theorem tells us that ged(a, b) is the smallest positive integer that can be written
as an “integer linear combination” of a and b.

Theorem 48 (Bezout). Let a,b be integers, not both zero. Then ged(a,b) is the smallest natural
number k # 0 for which the equation k = ax + by has solutions in Z.
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Proof. Set

ME{za+yb: z,ycZ}.
Note that a,b are both in M (by choosing x = 1 and y = 0, or the other way around). So M
contains at least one nonzero integer. Also, if z is in M, so is —z, because if z = za + yb then
—z = (—z)a+ (—y)b. Thus M contains at least one nonzero natural number. Now let d be the

smallest nonzero natural number in M, and let x4, yq be some integers satisfying
d=axg+ byy. (1)
We claim that d divides any element of M. In fact, choose an arbitrary m € M and write it as
m = aTy, + byYm,. (2)

By the Euclidean division of m by d, we have m = qd + r, with 0 < r < d. Sor = m — q¢d.
Plugging in equations (1) and (2) we get

r=m—qd = axpm + bym — q(azq + byq) = (Tm — qxa)a + (Ym — qya)b.

So ris in M. But then r must be 0, or else it would be a nonzero natural number in M smaller
than d, contradicting how d was chosen. So m is a multiple of d. This holds for all integers m in
M. In particular, since a and b are both in M, d divides both a and b. It remains to show that
d is the greatest common divisor of a and b. This is easy: Any other natural number ¢ dividing
both a and b clearly also divides axq + byy = d; which implies ¢ < d. O

Corollary 49. The equation 1 = ax + by has integer solutions if and only if ged(a,b) = 1.
Proof. This is the case d = 1 of Theorem 48. O

Remark 50. This yields a much shorter proof of Euclid’s Lemma 13. In fact, let p be a prime
that divides a product ab of two integers. If p does not divide a, then ged(a,p) = 1, so by
Bezout’s corollary we can find integers x,y such that 1 = ax 4+ py. Multiplying this expression
by b, we obtain

b= (ab)x + bpy,

which writes b as the sum of two “integer multiples” of p. So by collecting a factor p from both,
we can write b as p times some integer, which for sign reasons cannot be of the form “(—1)n”.
So b is p times 1 times a natural number.

The set Q as quotient

def

Example 51 (Q as quotient). The set Q can also be defined as follows: on Y =7Z x (Z\ {0})
we introduce the equivalence relation

(a,b) ~ (d', V) < ab/ = d'b.

Then Q € Y/N. By convention, we denote (a,b) by ‘3.

al

In other words, two fractions ¢, % are considered identical if ab’ = a'b. For example 1 =1

’ Dy 9
and % are the same. So if you want each rational number to be represented by precisely one
pair (a,b), perhaps you would prefer to write something like

Q={0}u {% such that a,b € Z, b> 0, a # 0, and ged(a,b) = 1}.
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Addition and multiplication are defined by

a+cdefad+cb Q C 4ef GC
-+ -= an — ==
b d bd bd bd
Note that both operations are compatible with the quotient. In other words, if § = ‘Z—,/ and if

¢ = ¢, then by definition ab' = a'b and ¢d’ = ¢'d. So
(ad + cb)b'd' = ab/dd’ + cd'bb’ = a’bdd’ + 'dbb’ = (a'd' + V' )bd and acb/d = a'c'bd,
which imply, respectively, that

a cowadtch dd+cbawad o aceac d'dgd C
b d  bd b'd’ v d bd bd Wd U d
We all know that Z can be viewed as a subset of Q, thanks to the identification
t: Z—Q
z— 7.

This map ¢ is injective, but not surjective, of course: elements like % are not in the image.

The set Z,, as quotient

Definition 52 (Congruence mod m). Fix an integer m > 2. Let a,b be two integers. We say
that “a is congruent to b modulo m”, and write

a=b modm,
if a—b is a multiple of m. For example, —39 is congruent to 9 modulo 12, because —39—9 = —48.

Proposition 53. Fiz an integer m > 2. For any integer z, there is a unique x € {0,1,...,m—1}
congruent to z modulo m.

Proof. The claim is clear by Theorem 46: If we write
z=qm+r with ¢ € Z and 0 < r < m,
then z is congruent to the remainder r; and because of uniqueness of Euclidean division, z
cannot be congruent to any other z in {0,1,...,m — 1}. dJ
Congruence behaves well with respect to products and sums:
Lemma 54. If a =d mod m and b= mod m, then
ab=d/ modm and a+b=d +bV modm.
Proof. By assumption, there are integers ¢, d such that a —a’ = ¢em and b — b’ = dm. Then
ab—ad't/ =ab—adb+adb—dV =bla—d)+adb-0b)=bem+ddn
is a multiple of m, so ab = a’t/. Similarly,
(a+b)—(d+b)=(a—d)+(b-0V)=cm+dm
is a multiple of m, so a +b=a’ + V. O
Corollary 55. Congruence modulo m is an equivalence relation on Z. The quotient of Z is
precisely Ly,.

As an exercise, you may verify that the modular addition and multiplication on Z,, can
be defined simply via the usual addition and multiplication on Z, by checking that the latter
operations are compatible with the quotient.

Notation. From now on, when working with Z,,, we will simply write down ab instead of
a ®b, and a + b instead of a @ b.
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0.5 Optional reading: From Q to R and C: The needs of geometers

Shortly after Euclid, Pythagoras made an amazing discovery: He found out that Q is not enough
to describe elementary geometry. For example, the diagonal of the square whose edge has length
1, cannot be measured exactly within Q.

Lemma 56 (Pythagoras). For any prime p, the equation x*> = p has no solutions in Q.

Proof. By contradiction, suppose we could write uniquely

2
p=(3)  withab€Z b>0 a#0, and ged(a,b) = 1.

2 2

Clearing denominators, pb> = a®. So p divides a®. By Euclid’s Lemma 13, this means that p
divides a. So write a = pk, with k in N. Plugging in, we get

pb? = (pk)*> = p*k*.

Canceling a p, we get b> = pk®. But then p divides b? and again by Lemma 13, p divides b.
Hence p is a common factor of a and b. A contradiction, we assumed ged(a,b) = 1. O

In fact, a stronger statement is true:

Theorem 57 (Dedekind, 1858). For any natural number n, if 2> = n has no solution in N,
then it has also no solution in Q.

Proof. By contradiction, suppose there is a natural number m > 1 such that 22 = m has no
solutions in N, but some solution # in Q. Without loss, we can assume that a > 0, b > 0, and b
is smallest possible (which basically is the same as assuming ged(a,b) = 1). Let £ be the largest
natural number such that /2 < m. Since 22 = m has no natural solution, we actually have
? < m. Clearly ¢ < 7 (because otherwise we would have £ > ¢ and passing to the squares,
(> > m, a contradiction). In other words, 0 < ¢ —¢. Also ¢ — ¢ < 1 (or else we would have

7 > £+ 1 and passing to the squares, m > (£+ 1)2, contradicting the way ¢ was chosen). Hence,
0< % <1 (3)

Now consider

vEb (3 —0).

Equation (3) multiplied by b tells us that 0 < b’ < b. On the other hand, being equal to a — b¢,
this &’ is an integer, and thus a natural number. Finally,

a a a a\ 2 a
b’-gzb<g—€) -g:b<g> — (b = bm — fa,
which proves that also V' - ¢ is a (positive) integer. Call this integer a/. But then we can write
o
by
with 0 < &' < b, a contradiction with the way we chose b. O
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Consider now the first theorem of Euclid’s Elements, perhaps the oldest global treatise of
mathematics, published around 300 BC. We have highlighted a sentence in the original proof.

Proposition 1. How to construct an equilateral triangle on a given segment.

E

“It is required to construct an equilateral triangle on the segment AB. Describe the circle BCD
with center A and radius AB. Again describe the circle ACE with center B and radius BA. Draw
segments CA and CB from the point C at which the circles cut one another to the points
A and B. Now, since the point A is the center of the circle CDB, therefore AC equals AB. Again,
since the point B is the center of the circle CAE, therefore BC equals BA. But AC was proved equal
to AB, so each of the segments AC and BC equals AB. Since things which equal the same thing
also equal one another, AC also equals BC. Therefore the three segments AC, AB, and BC equal
one another. Therefore the triangle ABC is equilateral, and it has been constructed on the given
straight segment AB.” O

Euclid assumed as intuitive that the two circles should intersect. But suppose for a moment
that we lived in the plane Q x Q. It would look just like the usual Cartesian plane, except that
we would only see points with both coordinates rational. A “circle with center A and radius
r” would still be definable as the collection of points in Q x Q at distance r from A. Let us
place Cartesian coordinates with the origin in A, and suppose B has coordinates (1,0). By
Pythagoras’ theorem, C' and D should have coordinates (%, y) and (%, —y), respectively, where

y is a solution of

Which is a problem, because then C' and D would not be in Q x Q (cf. Lemma 56). So in the
“rational plane” Q x @, already the first theorem of Euclid’s book would be nonsense!

We also point out that this “missing number” (which, after defining the square root, we will
call @) is the “least upper bound” of the set

{x € Q such that 2? < i},

which consists entirely of rational numbers. So we have also just found out that the least upper
bound of a family of elements of Q need not be in Q! This has consequence on another problem
of doing geometry in Q x QQ, namely, the computation of curve lengths. In his two essays On the
sphere and the Cylinder and Measurement of the Circle, dating back to the third century b.C.,
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Archimedes showed that in any circle the ratio between perimeter and diameter is a number
(called 7) between 3 + % and 3 + % Archimedes obtained these bounds by comparing the
perimeter of the inscribed regular polygon with 96 edges (the lower bound) and the perimeter of
the circumscribed regular polygon with 96 edges (the upper bound). The same method, applied
to regular polygons with a higher number of edges, lead to sharper bounds. Quoting Peano®:

“The postulates that were stated by Archimedes in On the sphere and the cylinder are
equivalent to the following definitions:

e the length of a curvilinear plane convex arc is the common value of the least upper
bound of the length of the polygonal inscribed arcs and the greatest lower bound of
the circumscribed ones;

e the area of a convex surface is the common value of the least upper bound of the length
of the polygonal inscribed convex surfaces, and the greatest lower bound of the area of
the circumscribed ones;

e the length of a curvilinear arc is the least upper bound of the length of the polygonal
inscribed arcs.”

What did Archimedes assume as implicit? Well, the belief that such ‘limit numbers’ must
exist. But as we saw above, there is no guarantee that the least upper bound of a sequence in
Q is itself in Q! And in fact, one can prove that 7 is not in Q.

Long story short, our rational plane is somewhat “incomplete”: In order to do geometry, we
need a larger set than Q. This larger set, called R, is best defined in a topology course; but
below we sketch a construction that should give you an idea. A preliminary notation: For any
rational number ¢, we define |q| « max{q, —q}.

Lemma 58 (Triangular inequality). For all rational numbers a,b, c, one has
la + b] < |a| + 0]
Proof. From the definition of |¢|, we have
a+b<|al+b<|a|l+ b, and
—a—b<la| —b<|af +[b]
So max{a + b, —a — b} < |a| + |b]. Which can be rewritten as |a + b| < |a| + |b]|. O

Definition 59. Let X be a set. A sequence in X is a function a : N — X. For brevity, we
denote the image a(n) by a,.

Definition 60. A sequence in Q is called
e convergent, if there exists £ € Q (called “limit” of the sequence) such that

1
Vk € N3M € N such that Vn > M we have |a,, — {| < —y
a condition which is usually abbreviated by ‘lim;,, o a,, = £’;
o Cauchy, if
1
Vk € N 3M € N such that Vn,m > M we have |a, — an| < TR

5Giuseppe Peano, Sulla definizione dell’area di una superficie, Rendiconti dell’Accademia dei Lincei, 1890,
54-57; translated in A. Papadopoulos, Metric Spaces Convezity and Nonpositive Curvature, EMS 2005, p. 31.
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e bounded, if there exists B in N such that for all n, |a,| < B.
Example 61. A constant sequence is bounded, Cauchy, and convergent.

Non-Example 62. The sequence a,, = n is not bounded. We will see in the next Proposition
that because of this, it is neither Cauchy, nor convergent.

Proposition 63. All convergent sequences are Cauchy and all Cauchy sequences are bounded.

Proof. Using the triangular inequality (|a, — am| < |an — €| + |am — £]), it is easy to see that
every convergent sequence is Cauchy. To see that Cauchy sequences are bounded, let us take a
Cauchy sequence (ap)nen. If we choose k = 0 and m = M in the definition, we get that there
exists M such that for all n > M, one has |a, — ap| < 1. In particular, for all n > M, by the
triangular inequality one has

|an| < |(an —anr) + ap| < lan —an| + lans| <1+ Jan].
Now since they are finitely many, set
B € max{|ag|, |a1l, ..., |ar—1|, 1+ |an]}.
By construction, |a,| < B for all n € N. O

Example 64. The sequence a, = (—1)" is obviously bounded, but it is neither Cauchy nor
convergent. In fact, for any M, we are going to find two larger indices n,m > M such that
an =1 and a,, = —1, so that |a, — an| = 2.

Example 65. There are also sequences that are Cauchy, but not convergent. Let a, be recur-
sively defined as

ap =1, 2z, Emaz {2 €{0,1,2,3,4,5,6,7,8,9} : (an_1+107"2)* <2}, a, E a1 +107"z.
Soag =1,a; = 1.4, a3 = 1.41, a3 = 1.414, and so on. (Intuitively, a,, is just “the truncation at at
the n-th digit of the decimal representation of v/2”, although we cannot define it this way because
we have not defined the symbol “v/2” yet.) This a,, will satisfy the Cauchy property by choosing,
for all k, M = k: In fact, for all n, m greater than M one clearly has |a,, — a,,| < 107M < ﬁ
However, Pythagoras’ discovery that Q contains no element whose square is 2 implies that this
sequence a, is not convergent in Q.

The idea is to artificially “expand” Q by inserting all the limits of all Cauchy sequences.
Definition 66. Let R be the set of all Cauchy sequences in QQ, with the following identification:

We consider two sequences a,, and d,, identical if their difference (a — d), &t an, — d, converges

to the constantly-zero sequence.

There is a natural way to view QQ as subset of R, via the map that associates to any rational
number ¢ the constant sequence, (q,q,q,q,...). However, there are much more elements in R
than those coming from Q. This was proven by Cantor using what is known today as diagonal
argument. The starting point of this argument is that every real number z can be represented
by means of a decimal representation:

o0
r=a+Y b-107, witha € Z,b; €{0,1,...,9}.
i=1
This representation is not always unique. For example, 2.399999... is identical to 2.4 (because
the difference tends to zero). However, this is the only thing that can go wrong: If we simply
throw out all decimal representations that are eventually always nine, then every real number
admits a unique decimal representation.
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Theorem 67 (Cantor). R is not countable.

Sketch of proof. It suffices to show that even the interval (0, 1) is not countable. By contradic-
tion, suppose we could list all elements of (0, 1), as

L1y T2y« vy Ty 41y -

By what we said above, every element x; has a decimal representation, which consists of the
integer 0 followed by a sequence of digits in {0,...,9}. (Remember we have thrown out repre-
sentations that end with a nine periodic.) Now construct an element y of R as follows: for the
first decimal digit of y, choose either 0 or 1, making sure that your choice does not coincide with
the first decimal digit of x1. In particular, the number y we are writing down will be different
from x1: They differ in the first decimal place. For the second digit of y, again, choose 0 or 1,
making sure not to agree with the second decimal digit of x5. In particular, y # z2. And so
on: For the i-th digit of y, choose either 0 or 1, disagreeing with the i-th digit of x;. In the
end, by construction you will have produced an element of R that is different from all z;. A
contradiction: The x; were supposed to be a complete list of all elements of R. O

Algebraic properties of R

It turns out that many of the nice properties of Q are inherited by this “expanded set” R. For
example, let (ay) and (by,) be two sequences in Q. We can define their sum as the sequence (cy,)
such that ¢, = a, + b, for all n. Easy exercise: The sum of two Cauchy sequences is Cauchy.
Note that in R, we are identifying Cauchy sequences whose differences converges to zero, but
this identification is compatible with the way we have just defined sums of sequences, in the
sense that if a — d converges to zero, then also (a + b) — (d + b) converges to zero, and so in R
the two sequences (a + b) and (d + b) are actually considered the same. This way the sum of
two real numbers is well-defined.

Similarly, we can define a product of two sequences the sequence (¢,,) such that ¢, = ay, - by,
for all n. Not-so-easy exercise: The product of any two Cauchy sequences is Cauchy. Here is
the proof. If a, b are Cauchy sequence, then they are both bounded, so there are constants
A, B in Q such that for all n one has |a,| < A and |b,| < B. So if we set C £ max{A, B},
we simultaneously have |a,| < C and |b,| < C for all n. Moreover, by definition of “Cauchy
sequence”, for all £ we can find an M’ such that for all n,m > M’, we have

1
an = aml < ey
and an M" such that for all n,m > M", we have
1
by, — b, _
| < T

So if we set M = max{M’, M"}, for all n,m > M we simultaneously have

1 1
and [by, — by,| < 5

[an = am| < 3 T 1)

Ck+1)
Now comes the crucial trick:

|anbn - ambm’ S |anbn - anbm + anbm - ambm‘
< |anbn - anbm| + |anbm - ambm|
= |an| - [bn — bm| + |bm| - [an — @

1 1 _ 1
<C- 3 +C o = 7
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This shows that a - b is Cauchy. It remains to check whether it is true or not that if a — d
converges to zero, then also (a - b) — (d - b) converges to zero. For this, note that since b is
bounded, there exists B such that |b,| < B for all n. Then since a — d converges to zero, there
exists M’ such that for all n > M’ one has

1

n*dn Si
la <GB

In particular, for all n > M’ one has then

1

nbn*dnbn: n*dnbn: n*dnbng n*dnB 7'3,
a = (o= )bl = lon = dul 10| < an = du]- B < G

which shows that (a-b) — (d - b) converges to zero.

This very long foreword has now come to a conclusion: The operations of sum and
product extend from QQ to R. Not only this is true, but all the main properties of sums and
products are maintained in the expansion.

Theorem 68. R is endowed with two internal operations + and - that satisfy the azioms:

F1 The operation + is associative. That is, for all x,y,z in R, x + (y+2) = (z +y) + 2.

F2 The operation + is commutative. That is, for all z,y,z m R, v +y =y + x.

F3 The operation + has a (unique) neutral element. That is, there exists an element z in R
such that for all x in F, x + z = x. This z is the constantly-zero sequence, which we denote
simply by “0”.

F4 FEvery element has a unique additive inverse. That is, for all x in R there exists exactly one
element y in F such that x +y = 0. From now on we denote such element by “—x”.

F5 The operation - is associative. That is, for all z,y,z m R, x-(y-2) = (x-y) - 2.

F6 The operation - is commutative. That s, for all z,y,z im R, z -y =y - x.

F7 The operation - has a (unique) neutral element. That is, there exists a (unique) element
z # 0 in R such that for all x in R, xz = x. Since this z is the constantly-one sequence,
from now on we denote such neutral element by “1”.

F8 FEvery element except 0 has a (unique) multiplicative inverse. That is, for all x # 0 in R
there exists exactly one element y in R such that xy = 1. From mow on we denote such
element by “z—17.

F9 The operation - distributes +: for all z,y,z in R, z- (y+ z) = (z-y) + (v - 2).

Proof. We only prove two, leaving the others to a very, very patient student.
COMMUTATIVITY. Every element of R is a Cauchy sequence in Q. From the way we defined the
sum of sequences (namely, “pointwise”),

(a4+b)p=an+by,=by,+a,=(b+a),.

EXISTENCE OF MULTIPLICATIVE INVERSE. Let a be a Cauchy sequence different than 0 in
R. Because it is Cauchy, for any k there is an M’ such that for all n,m > M’ we have
lan, — am| < m Now, remember that in R two sequences are identified if their difference
converges to 0. So, “a # 0 in R” really means that a does not converge to zero. That means
that there exists k such that, for all M (and in particular for M = M’), there is at least one

index n > M such that |a,| > k—}rl By the triangular inequality, then,

— < |an|:|an_am+am| S‘an_am‘+|am’< 9 +|am|

1
(k+1)
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So there exists k and there exists M’ such that, for all m > M’  we have |a,,| > %4-1 Thus we
can define a new sequence b as follows:

=1 if m < M,
T ()t ifm> M

What we have just said implies that b is bounded: For all m, since |a;,| > k%rl, we have
|bm| < k4 1. We need some more effort to show that b is Cauchy. To see this, since a and b are
bounded, there is a C such that for all n both |a,| < C and |b,| < C are true. In other words,
for all n both 1 < ﬁ and 1 < % are true. But then for n,m > M’ (the value above),

= (2 bn—bm

b -bm

_2|1 1
_C b'm b'fl

= C?|am, — an .

Now a is Cauchy, so for each k we can find an M” > M’ such that for all m,n > M", we have

1
[am = anl < E
And so t for all m,n > M"”, we can show that |b, — by,| < C%H, as desired. O]

There is, however, a final bonus. We can define square roots of all positive real numbers.
Let’s go back to Example 65. For any rational number g > 1, let us define

def

ap =1, 2z, Emax{z€{0,1,2,3,4,5,6,7,8,9} : (an—1+107"2)*> <q}, an = ap_1+107"z.

This is a Cauchy increasing sequence and so in R it has a limit. Call it £. By excluding the
other two cases ¢? < ¢ and ¢? > ¢, it is not difficult to see that it must be ¢? = ¢. Thus for any

rational number ¢ > 1, there is an £ > 0 in R that satisfies /2 = ¢. But then for any rational

number 0 < ¢ < 1, there is also ¢ > 0 in R that satisfies (¢)2 = ¢: Namely, ¢/ < %, where /£ is

the positive real number that satisfies £2 = %.
This works not just for all positive ¢ € Q, but also for all positive ¢ € R. In fact, set

vV : RZO — RZO
0 — 0
x>0 +— the unique £ > 0 such that (% = z.

It is easy to see that this function is increasing, i.e. if 0 < z <y, then /z < \/y.

Complex numbers

Once R is defined, it is somewhat disturbing that equations of the type z? = r still have no
solutions over R if r is negative. To fix this, it is easy to define the set of complex numbers

C = {a + bi such that a,b € R}.
Recall that i is short for “imaginary unit”, so i> = —1. Addition in C is defined as
(a+bi)+ (c+di) Z (a+c)+ (b+d)i,

whereas the formula for multiplying is

(a+bi) - (c+di) € (ac — bd) + (ad + be)i.
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Lemma 69. C contains “all square roots”: That is, For any z in C, there exists § € C such
that 6% = z.

Proof. Let z = a+1ib. If b =0 then z € R and the claim is easy: When a > 0, ¢ is a real number
satisfying #2 = a, and when a < 0, § is ¢ times a real number satisfying > = —a. So let us
assume b # 0. We look for an element § = = + iy such that

a+ib = (z+iy)(z +iy) = 2% — y* +i(2xy).
In other words, given real numbers a and b, we need to solve over R the system
-y =a
2zy  =0b.

Substituting y = % into the first equation, we obtain [z2 — % = a, or in other words, 4z —b? =

4ax?. Setting t 22 and imposing t > 0, this gives rise to a quadratic equation,
4¢? — dat — b* = 0,

which has a positive solution, namely, ¢ = 2etvda=+4b” ”452‘*'41’2. (It is positive because v4a? + 4% >

V4a? = |2a|.) Once we found ¢, we immediately derive z = v/t and y = %. O

Lemma 70. For any (a,b) # (0,0) in R2, the element a + ib has a multiplicative inverse in C.

Proof. If (a,b) # (0,0), then » = a2 + b? is a nonzero real number, and

2 2 2 2
(a+ib)<a—bz’):<a+b>+i(ab—ab)=a+b +i-0=1. O
T T T T T T

r

0.6 Exercises

0. Recalling that (Z) « #lk),, prove that for any integers n > k > 1 one has

SO R HEIAN]

1. Use induction on n to prove Newton’s formula:
" /n
(a+b)" = kgo <k> ak k.
Hint: You may use exercise 0 and the following “reindexing trick”:
i <”> aFrlpn—k — Til < n > ok prtl-k
— k kE—1 ’

k=1

2. Let n be a positive integer. Prove that for any k € {0,...,n}, one has
n
< 2™
(+)
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10.
11.

12.
13.

14.
15.

16.
17.

18.

19.

. Use induction to prove the pidgeonhole principle: any map from a set with n + 1 objects

to a set with n objects, is not injective.

. Use induction to prove the generalized pidgeonhole principle: If more than kn objects are

placed into n boxes, then at least one box must contain more than k objects. (The case
k =1 is the pidgeonhole principle.)

. Prove that

1
13+23+33+...+n3:ZnQ(n—i-l)z.

. Prove that n! > 3™ for n large.

Prove that for all 7+ € N and for all integers n > 1

S (=00

. Compute the ged(528,303) using the Euclidean algorithm.

. Prove the “Euclidean division for Z” (given two integers a,b, with b # 0, there exists a

unique pair of integers (r,q) such that @ = bg+r, and 0 < r < |b”) by induction on |al.
Find all integer solutions of the equation 2z + 3y = 15.
Let a,b be positive integers such that ged(a,b) = 1. Let
Hy (a,b) = {(z,y) € Z x Z such that az — by = 0}
be the set of integer solutions of ax — by = 0. Prove that

Mg (a,b) = {(bk, ak) such that k € Z}.

Find all integer solutions of 62 — 9y = 15. Can you find all positive integer solutions?

Think of a number. Square it. Divide the result by 3. Why is the remainder always 0 or
1, but never 27 Justify your answer.

What is the last digit of 32°°1? Hint: work in Zq.

What are the last two digits of 913250946798%7? Hint: work in Zig9. What about the last
three digits? Where would you work?

Compute 1234567823456789 104 3.

Suppose that a number  can be written in the decimal representation as “abcabc”, with
a,b, ¢ decimal digits. (For example, x = 285285.) Show that x is always a multiple of 13.

Let n be any integer > 2. Prove that

n is prime <= for all integers k € {1,...,n — 1}, (Z) is a multiple of n.

(Freshman’s Dream) Use the previous result to show that for any prime number p, for any
integers z, y,
(x+y)P =2 +y” mod p.
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20.

21.

22.

23.

24.

(Fermat’s Little Theorem, 1640) Use the Freshman’s Dream and induction on a to show
the following: if p is any prime number, then for any a € N one has

a? =a mod p.

Find the remainder of the division of 111!® by 59. (Hint: use Fermat’s little theorem.)

Write the number 73 on a piece of paper, fold it up, and give it to an unsuspecting
friend. Ask your friend to write his/her birth year twice in a calculator. (E.g., T would
write 19821982.) Then ask your friend if the number is divisible by any chance by 137;
ask him/her to verify with the calculator. Then say, “please divide the result by your
birthyear”. Ask your friend to unwrap the paper: the calculator and the piece of paper
will magically tell the same number, 73! Can you spoil the magic and explain the trick?

Under what conditions is a six-digit number whose decimal digits are abcabc divisible by
7,9,11 and 13? (For example, 135135 is divisible by all of them.)

For any positive integers a and b, prove that ged(a,b) - lem(a, b) = ab.
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1 Permutations and Matrices

1.1 Permutations

Let n be any positive integer. Let [n] £ {1,...,n}. Let
S, € {0 : [n] — [n] bijective}.
The elements of S, are called permutations.

Lemma 71. The composition of injective (resp. surjective) maps is injective (resp. surjective).
In particular, the composition of any two permutation is a permutation.

Proof. Let f: X - Y and g:Y — Z be arbitrary functions.
e if f g are injective and gf(z) = gf(2'), then by the injectivity of g one has f(x) = f(2/),
which by the injectivity of f implies z = a/;
e if f g are surjective and z € Z, pick any y in Y such that g(y) = z, then pick any = in X
such that f(z) = y: by construction, gf(z) = g(y) = z. O
Note that if ¢ and 7 are both invertible, then the inverse of o7 is the function 7o~ 1.
Proposition 72. The set S,, with the operation of composition satisfies the following properties:
(a) Closure. If 0,7 are in S, so is oT.
(b) Associativity. If p,o,7 are in Sy, p(o1) = (po)T.
(c¢) Identity. There is a unique function 1 (namely, the identity on S, ) such that for every o in
Sp, 0l=0=10.
(d) Inverses. For every o in S, there exists a unique T in Sy, with the property that ot =1 = 70.

There are three types of notation to write down the same permutation:

(1
7=\ 2

(The second notation writes o as product of disjoint cycles; the third, as product of non-
disjoint flips; we will explain them in a few minutes.) The first notation is called two-line
notation. The rule behind it is, & maps each elements of the first row into the element of the
second row immediately below. (In this case, the first row is ordered, but it does not have to
be: What matters is that below each ¢ sits ¢(i).) For example, o(3) = 3. To compose two
functions, we write them on top of one another, remembering that when we write 7 o o the first
permutation applied is o, so ¢ should be on top. The two-line notation of 7o ¢ is then obtained
by looking at only the first and the last row, ignoring all intermediate ones. For example, if

—= N

S 2) o= (12)(456), and o = (12)(45)(56).

(123456 1 (123456 0
"=\1 24356 an 7 \2 1356 4) en
1 2345 6 12345 6
TOoO = 2 1 3 5 6 4 and ooT = 1 2 4 3 5 6
29145 6 3. 215 3 6 4

En passant, notice that 7 o ¢ and o o 7 are different, so the operation is not commutative.

Definition 73. Let 2 < k < n be integers. A cycle (of length k) in a permutation o € S, is a
k-tuple
(al, as, ... ,ak),
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such that a; < a;41, o(ag) = a1 and o(a;) = a;4; for alli € {1,...,k —1}. Cycles of length two
are called flips (or transpositions).

Any cycle g (of length k) is naturally associated to a permutation v € S, as follows: v = ¢ on
the elements of the cycle, and v = id otherwise.

Example 74. In the permutation

(123456
77\ 21356 4)
there is a cycle of length 3, namely, g = (4,5,6). Its associated permutation is
(1 2 3 4 6
Tm\1 2356 4)
Theorem 75. Fvery permutation different than the identity can be written as product of disjoint
cycles, in a unique way (up to changing the order of the cycles).

S Ot

Proof. Let a; be the smallest integer such that o(a;) # a1. Let ¢; be the smallest integer such
that o'(a1) = a1. Then the first cycle is

(a1,0(ar), o(ay),..., atl_l(al)) :

Now let ag be the smallest integer that does not belong to the cycle above, and satisfies o(ag) #
as. Let to be the smallest integer such that o%2(as) = az. The second cycle is

(az,0(a2), o?(az),. .. ,0t2_1b(a2)) .

And so on. We sketch the algorithm with the help of an example. Suppose

(12
7=\ 3 8

o(l)=3, 0(3)=4, c(4)=6, o(6)=7, o(7)=9, 0(9)=1.

So the first cycle is (1,3,4,6,7,9). Now let us consider the smallest integer not contained in this
cycle, and apply o repeatedly, until we get back to such integer. In our case, we re-start with 2:

So (2,8) is the second cycle. By construction, it is disjoint from the first cycle, because o is
injective. Now the smallest integer that belongs to neither of the previous cycles is 5. Since
o(5) =5, we are done. Our final result is

o =(1,3,4,6,7,9)(2,8).

Now, technically what we found is just a list of disjoint cycles. But if we interpreted every
cycle as its associated permutation in &,, the list can actually be interpreted a product of
permutations. More precisely, if 7, 1,2 are the permutations of S,, associated respectively to
o, to (1,3,4,6,7,9), and to (2,8), then it is clear that

T =m0
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For this reason, we speak of “product of cycles”. Note that disjoint cycles commute:

Y=707=72°7-
To complete our “proof by example”, we claim that up to commuting the disjoint cycles, this
decomposition is unique. This is easy: Let

’y:nlO...Onk

be another decomposition into disjoint cycles. Without loss of generality, suppose 1 appears in
n1. Since o(1) = 3,0(3) = 4, etc., it is clear that ; must be the cycle (1,3,4,6,7,9). Similarly,
suppose 7 is the cycle containing 2: Then ny = (2,8). Since 1(5) must be 5, we conclude that
~v; = n; for all 4. ]

Lemma 76. Every cycle of length k can be written as product of k — 1 non-disjoint flips (not
necessarily in a unique way).

Proof. If k > 2, we claim that

(a1,a2,...,ar) = (a1,a2)(az, as) - - - (ag—2, ag—1)(ax-1, ag)-.
By this we mean that if v is the permutation of S,, associated to (ai,...,a), and ~; is the
permutation of S, associated to (a;,a;+1), then
Y=710720...0%—1-

As a warm up, let us check this first for the element a;. By definition, vy(a;) = a2. On the other
hand, ; swaps a; with a;11, so it has no effect on ay if ¢ > 2. Formally,

al if 4 Z 2
W@ = 4y iti= 1.

So
Yioy20...0v_1(a1) =y10920...0v_a(a1) = ... =v1(a1) = as,
as desired. Now let us check the effect on the generic element a;, with j < k. Clearly y(a;) =
aj+1, with the exception of ay, for which y(ax) = a1. On the other hand,
aj ifi Z ] + 1
aj41 if 4 :j

W)= al =1
a ifi<j-2.
So if j < k, we have
yi0...0v-1(a;) =...=mo...ovj(a;) =y10...0%-1(aj+1 = ... = 71(aj4+1) = aji1.
For a;, instead we have
Y10..0oqk—1(ag) =y10... 0 —2(ak-1) =71 0...0Y-3(ak—2) = ... =m(a2) =ar. O
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Example 77. Let us verify that (1,3,4,6,7,9) = (1,3)(3,4)(4,6)(6,7)(7,9). In fact, the right
hand side is given by the first and the last row of the matrix

1 2 3 45 6 7 8 9
1 23 45 6 9 8 7
| 123457986
Tl 123657984
1 246 579 8 3
3 2 46 5 7 9 81
and the left hand side is precisely
(123456789
7“3 24657981

Definition 78. A permutation o € S, is called even if it can be written as the product of an
even number of flips, and odd if it can be written as the product of an odd number of flips.

Example 79. A k-cycle is an even permutation if k is odd, and an odd permutation if k is
even. In fact, any k-cycle is the product of k£ — 1 flips.

Remark 80. A priori, it could be that a permutation is both even and odd. (We will actually
prove later that this cannot happen.) Note that independently from this result, we can still say
that the composition of two even permutation is an even permutation.

Lemma 81. If a permutation is even (resp. odd), so is its inverse

Proof. Every flip is the inverse of itself. So if 0 = 172 - - - yp—17¢, with ; flips, then

ol =(rve 1) =) T (re) T () T ) T = e et o e O
Theorem 82. No permutation of S, is both even and odd.

Proof. By contradiction, suppose ¢ is both even and odd. By the previous Lemma, so is o~ L.

By composing them, we obtain in particular that the identity is odd. Let ¢ be the smallest odd
number such that the identity can be written as a product of £ flips. Obviously ¢ > 1. Write

id="y172-"- Y

with ~; flips, and suppose v¢ = (a,b). Consider v,—; and the effect it might possibly have on a
and b: In v4_1, either both a and b could be transposed; or just a; or just b; or neither of them.
e If v,_1 = (a,b), then it is the inverse of vy, so we could write the identity more succinctly
as Y172 - - - Ye—2. A contradiction with how we chose /.
o If v_1 = (a,d), with d # b, then

Ye—1ve = (a,d)(a,b) = (a,b,d) = (a,b)(b,d).
o If vo—1 = (b,d), with d # a, then

Ye-17e = (b,d)(a,b) = (a,d,b) = (a,d)(b,d).
o If voy—1 = (¢,d), with {a,b} N {c,d} = 0, then

Ye—17e = (Ca d)(av b) = (a'> b)(c7 d)
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So the first case is impossible, and in the other three cases, we can move the flip that moves a
to the left (leaving as “last flip” a flip that does not touch a). Now we repeat the argument for
Y¢—1 and y7_o. And so on, until the only flip that moves a is «;. But this is a contradiction: If
among all flips v1,...,7, only 71 moves a, how can their composition be the identity? Their
composition will move a as well! ]

Proposition 83. Forn > 2, the set S;, has exactly n! elements, whereas the set
A, £ {even permutations}
has exactly %’ elements.

Proof. Consider the following function between sets

v Ay — (Sp\ An)
o +— o0o0(l1,2).

This function is well-defined and bijective, the inverse being

o: (Sp\4,) — A,
T — 70 (1,2).

This proves that A,, and its complement within S,, have the same number of elements. On the
other hand, S,, has n! elements, because to write down a bijection o : [n] — [n] we have n choices
for o(1), n — 1 choices for o(2), and so on. Hence, A, has %‘ elements. O

1.2 Matrices and determinants

Throughout this subsection, let K be one the sets Q,R, C or Z,,, with p prime.

Definition 84. An m xn matriz A is an array of numbers in K called entries, arranged in rows
(numbered from top to bottom) and columns (numbered from left to right). The entry in row i
and column j is denoted by a; ;. Thus a generic m X n matrix looks like

ai1 a1.2 -eo QA1n
a271 CLQ’Z e CLQm
Am1 Am2 ... Ommn

Definition 85. Given an £ xm matrix A and an m X n matrix B, their (row-by-column) product
AB is the £ x n matrix C' with entries defined by

m
Cij = E i, kb, ;-
k=1

0 1 a b c d a b 0 1 b a
Notethaﬁc(1 0)(0 d>_(a b>,whereas<c d><1 O>_<d C).So

this “product” is very much not commutative: It could be that all entries of AB are different
than the corresponding entries of BA. However, the row-by-column product is associative, in
the sense that A(BC) = (AB)C for any three matrices of sizes such that these two expressions
make sense. Here is a proof: if A is an m X a matrix, B an a X b matrix, C' a ¢ X n matrix, then

A(BQO);j = Egzl ai ;xBCyj = D51 ik Zb)lé:l D Chij = Dbt Sone1 @i kbk,nCh
= > 1 (OCkm1 @ikben)cng = D p—1 ABinch = (AB)Cj.
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Moreover, for any m € N, let us call I,,, the m x m matrix with ones on the main diagonal
and zeroes elsewhere (i.e. Iy, =1 and I;, = 0if j # k.) It is easy to see that for all £ x m
matrices A and for all m x n matrices B one has Al,, = A and I,,B = B.

Definition 86. A matrix is called square if m = n, i.e., if it has the same number of rows and
columns. The diagonal elements of an n x n matrix are {a;; such that 1 < i < n}. A square
matrix is upper triangular if a;; = 0 for all ¢ > j. A square matrix is lower triangular if a;; = 0
for all i < j. A square matrix is diagonal if it is both upper triangular and lower triangular.
The inverse of an n x n matrix A is a matrix B such that AB = BA = I, if any such B exists.

Definition 87 (Determinant). The determinant of a square matrix A is defined by

det A= sgn(0) a1 5(1)  A2,6(2) *** Anyo(n)>
O’GSn

where sgno is +1 if ¢ is even and —1 if ¢ is odd.

Proposition 88. If A is a diagonal matriz, det A is the product of the diagonal elements. In
particular, det I,, = 1.

Proof. If ¢ is any permutation different than the identity, then there exists an ¢ such that
o(i) # i, and thus a; ,(;) = 0, by definition of diagonal matrix. This means that the product
a10(1) " G2,0(2) " ** Gn,o(n) 1S Z€TO, because one of its factors is zero. This is true for every o # id:
Thus the only nonzero summand in the definition of determinant of A is the one corresponding
to the identity permutation, namely, a11 - a2 app- O

The main result of the theory of determinants is the following theorem, whose proof occupies
half of our Linear Algebra course at UM, and so is omitted here for reasons of time.

Theorem 89 (Cauchy-Binet). For any two n X n matrices A, B,
det(AB) = det A - det B = det(BA).
Moreover, det A # 0 if and only if A has an inverse; if and only if A has a right (or left) inverse.
Corollary 90. If AB = I,,, then both A and B are invertible, and A~ = B.
Proof. See the Exercises O
Given Cauchy—Binet’s theorem, of particular interest are two sets:

Definition 91. The set GL(n, K) (called “general linear group”) consists of all invertible n x n
matrices with entries in K. The set SL(n, K) (called “special linear group”) consists of all n x n
matrices with entries in K and determinant equal to 1.

Proposition 92. G = GL(n,K) with row-by-column multiplication satisfies:

(a) Closure. If A, B are in G, so is AB.

(b) Associativity. If A, B,C are in G, A(BC) = (AB)C.

(c) Identity. There is a unique matriz I (namely, the identity matriz I, ) such that for every
AinG, Al=A=1TA.

(d) Inverses. For every A in G, there exists a unique B in G with the property that AB = I,, =
BA.

The same is true if we replace G with G' = SL(n,K).
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Proposition 93 (cf. Rotman®). Given n positive integers ay, ..., an,

d an n x n matriv A with entries in Z whose

d . =1 _ . .
ged(an, ..., an) first row is ay,...,ay, and whose determinant is 1.

Proof.

“e” Set 4 & ged(ay, ..., an). By definition, the determinant of A is a sum of n! products of
integers, the first of which integers is a multiple of d. So det A is also a multiple of d. Since
det A = 1, we conclude d = 1.

“=” By induction on n. For n = 2 this is essentially Bezout’s theorem (Theorem 48): If
ged(ag, ag) = 1, we can find integers 1, xo such that ayxy + agwe = 1, and so the matrix

A g aq a9
—T2 T1

has determinant 1, as desired. For larger n, set

aZged(ay,. .., an_1) and bid:ef% (fori=1,...,n—1).
a
By construction, ged(by,...,b,—1) = 1. So we can apply the inductive assumption and
find an (n — 1) x (n — 1) matrix B with entries in Z whose first row is b1,...,b,—1 and

whose determinant is 1. Let C be the submatrix formed by the lower n — 2 rows of B.
Note that C is not square (it has n — 2 rows and n — 1 columns), but by definition

det( b C bn—1 ) =detB = 1.

Now, it is easy to see that ged(a,a,) = ged(aq,...,a,) = 1. So by Bezout’s Theorem 48,
we can find integers s and t such that

anpt +as = 1.

With these integers and with the aforementioned (n — 2) x (n — 1) matrix C, let us create
the new n X n matrix

o aby ... abp—1 an
A= C 0
—tbl e —tbn_l S

Let us see that A is the desired matrix. Indeed, A has integer entries and first row equal
to (ai,...,an—1,a,). It remains to show that det A = 1. This is easy if you know a couple
of tricks to compute determinants:

C aby ... ab,_
_ (_1\n+1 2n . 1 n—11) _
det A = (—1)"""a,det < .. tbn—l) + (=1)*"s - det ( c ) =

thy ... —tbp1
C

— (_1)271,710% . (—t) . det (bl C bnl) + s-a-det (bl C bn1> _

=(-1)?"a,-t-detB+s-a-detB = apt+as=1. O
SRotman, Introduction to the Theory of Groups, Springer, 1995, Theorem VI.4, p. 488

= () 1), et (- s (M ) -
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1.3

1.

Exercises

Show that if A is upper triangular (or lower triangular), then det A is the product of the
diagonal elements. Hint: If o is a permutation different than the identity, is it true that
there exist an ¢ with o(i) > ¢ and a j such that o(j) < 57

. Let f:Z — 7Z be the function that maps z to z + 1 if z is even, and to z — 1 if z is odd.

Is f a bijection? If so, what is f2? What is f3?

. Let A, B,C besets. Let f: A — B and g : B — C be functions such that gf is a bijection.

Must f be a bijection? Must g7

. Let A, B be n x n matrices. Prove that if AB = I,,, then automatically BA = I, (i.e. A

has an inverse, and it coincides with B).

. Prove that the determinant of any square matrix coincides with that of its transpose.

Hint: Every permutation is of the form 7!, for some 7 permutation; and 7 is even if and
only if 771 is even. Moreover, the list (a1,7-1(1), A2,7-1(2)s - - - » A 7-1(n)) 18 just a reshuffling
of the list (aT(l)J, CLT(2)72, e 7a'r(n),n)"'

. Prove that for each n > 3, every even permutation of S,, can be written as product of

3-cycles.
Hint: First show that the product of any two flips is either the identity, or a 3-cycle, or a
product of two 3-cycles. To this end, it may be useful to compute (a, b, ¢)(c, d, a).

Represent the following as product of disjoint cycles:

(1267)(34562)(68)  (123456)(1357)(163)  (14)(15)(16)(17)
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2 Abstract groups

2.1 Definition, examples, and first properties of groups

Definition 94. A group consists of a set G endowed with an operation (x,y) — = % y that
satisfies the following axioms:

(Closure) For all z,y in G, the element z x y is in A.
(Associativity) For all z,y,z in G, x x (y x z) = (z xy) * 2. So we may leave out brackets.

(Identity) There exists a (necessarily unique’) neutral element e in G such that for all x in G,
Txe=1T=e*r.

(Inverses) For every x in G, there exists a (necessarily unique®) inverse y in G such that
Txy=e€e=yx*x.

Example 95 (Bijections and Permutations). Given an arbitrary set A, the set
G={f:A— A bijective}

is a group with respect to composition; the neutral element is the identity function. When A is
finite, the bijections are called permutations, as we saw. The inverse of f is denoted by f~1.

Example 96 ((Z,+)). Z is a group with respect to addition, with 0 as neutral element. The
inverse of n is denoted by —n.

Example 97 ((Z,,+) and (U, -)). For any positive integer m, Z,, is a group with respect to
addition modulo m. The (additive) inverse of 0 is 0, whereas the (additive) inverse of any other
r is denoted by m —r. Instead Z;, E o \ {0} is a group with respect to multiplication (modulo
m) if and only if m is prime. If m is not prime, however, it is still true that the integers in
{1,...,m — 1} coprime with m form a group with respect to multiplication modulo m. This is
usually called multiplicative group of integers modulo m, denoted by (U, -). The multiplicative
inverse of an 7 in U, is typically denoted by ~!. Note that for any prime p, U, is simply Z,
minus {0}. The neutral element of (Z,,+) is 0; the neutral element of (Up,-) is 1.

Example 98 ((Q,+) and (Q*,-)). The set of rational numbers
Qgg{%smhﬂmxmbGZandb#O}
is a group with respect to the addition defined by

a ¢ g ad+ch

bTd

The neutral element is %, or simply 0; the ‘additive inverse’ of 3 is -*. This group is denoted
by (Q,+).

At the same time, if Q* & Q\ {0}, then also (Q*, ) is a group, where - is the usual multiplication
defined by

dif(lc

4 C gt ac
bd bd
1

The neutral element of (Q*,-) is of course T, or simply 1; the ‘multiplicative inverse’ of ¢, with

a#0,is 2.

"Were there two neutral elements e; and e, we would have e; x ea = e; (because ez is neutral) yet also
e1 x e2 = ez (because e; is neutral), so e; = ea.

8Were there two inverses 31 and y» for the same element x, we would have 31 * % y2 = e * y2 = y2 (because
y1 is inverse) yet also y1 x  * y2 = y1 x ¢ = y1 (because y» is inverse), so y1 = ya.

1
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Example 99 ((R,+) and (R*,-)). (R,+) is a group with 0 as neutral element. Moreover,
R* & R\ {0} is a group with respect to multiplication, with neutral element 1.

Example 100 ((C,+) and (C*,-)). The set of complex numbers is defined by

def

C = {a + bi such that a,b € R}.
Recall that i is short for “imaginary unit” and i> = —1; addition in C is defined as
(a+bi)+ (c+di) = (a+c)+ (b+d)i,
whereas the formula for multiplying is
(a+ bi) - (c+ di) £ (ac — bd) + (ad + be)i.

Then (C,+) is a group, with 0 4 0i as neutral element. In this group, the inverse of a + bi is
—a — bi.

At the same time, C* & C \ {0} is a group with respect to multiplication, with neutral element
1 =1+ 0:i. In this group, the inverse of a + bi is ﬁ(a — bi).

Example 101. Let F be one of Q, R, C, Z,, with p prime. The sets GL,,(F) (respectively, SLy,(F))
of n x n matrices with entries in F and determinant nonzero (respectively, one) is a group with
respect to X, the operation of row-by-column multiplication.

Example 102 (Quaternions). Consider on R*\ {(0,0,0,0)} the following operation, introduced
by Hamilton in 1843:

(a,b,c,d)* (a/,0,c,d) et
def

= (ad' = b —cd —dd', abl +d'b+cd —d, ad +d'c—bd +Vd, ad +d'd+bd —Vec).

With respect to these operations, R*\ {(0,0,0,0)} becomes a group, called the quaternions. It
is easy to see that the neutral element is (1,0,0,0) and the inverse of an element (a,b, ¢, d) is

1

bc,d)" =
(@bed ™ = o e

(a,—b, —c, —d).

Note that (0,1,0,0) = (0,0,1,0) = (0,0,0, 1), whereas (0,0,1,0) * (0,1,0,0) = (0,0,0,—1).
Example 103. Let (G, ®), (H,-) be groups. Then the cartesian product

def

G x H={(g,h) such that g € G,h € H}
is a group with respect to the “entrywise” operation
(g1, h1) * (92, h2) = (91 ® g2, b1 - o).

In fact, the neutral element is just the pair (eq, ep) of the respective neutral elements; and the
inverse of the pair (g, h) is simply the pair

(inverse of ¢ in (G,®), inverse of h in (H,")).
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Important notation change. We can’t go on like this. We have to make a choice for
the notation of the inverse of an element. Here there are two philosophies. Should we think
of x more as an addition, and so denote the inverse of x by —x7 Or should we think of %
more as a multiplication, and so denote the inverse of by z7'? Both choices are perfectly
reasonable. Here is the verdict. Since for abstract groups we are not requiring commutativity,
and the above examples of non-commutative groups were matrices, quaternions, permutations
(for which the notation is basically multiplicative), then for abstract groups we are going to
choose the multiplicative notation, and simply drop the symbol x as implicit, exactly like we do
with multiplication. In other words, we will write ab instead of a x b and speak of ab as the
“product” of @ and b. Consistently, the inverse of 2 will be denoted by z~!. Some authors, again
for consistence, denote the neutral element by 1; but we prefer to keep the notation e. We will
also often write “let G be a group” instead of “let (G,-) be a group”.

Remark 104. Instead of a x b~! you might be tempted to write 7+ Don’t do it!, because our

operation might not be commutative — so if you write ¢, it’s not clear whether you meant axb™?
or b~ xa.

Proposition 105 (Cancellation). Let G be a group. For any a,b,c € G, if ab= ac then b = c.
Proof. “Left-multiply” by a~ . O

Proposition 106 (‘Inverse of product’). Let G be a group. For any a,b € G, one has
(ab)~t =b"ta™L.

Proof. Since the inverse is unique, we only need to check that (ab)(b~'a™!) = e = (b=1a"1)(ab).
This follows from associativity: for example,

(ab)(b~ta™) = (a(bb™H))a™ = (ae)a ! =aat =e. O

2.2 Subgroups and Lagrange’s theorem

Definition 107. Let G be a group. A subgroup of G is a subset H C (G that is a group with
respect to the same operation.

Proposition 108. Let G be a group. H C G is a subgroup <= H satisfies
(SG1) for each a,b in H, the element ab~! is in H.

Proof. “=" This is easy: if a,b € H group, then b~! is in H, so ab~! is in H.

“<” Applying (SG1) to b = a we get that the neutral element ¢ = aa~! is in H. But then for
each b in H we get that eb~! is in H, again by (SG1). So H contains the inverse of any of
its elements. Finally, we should check that the operation is internal. Let z,y be arbitrary
elements of H. We have just proven that y~! € H. Applying (SG1) toa =z and b =y},
we get that z((y~')~!) is in H. In other words, zy € H. O

Example 109. (Z,+) is subgroup of (Q,+), which is subgroup of (R,+), which is subgroup
of (C,+). Similarly, ({—1,1},-) is subgroup of (Q*,-), which is subgroup of (R*,-), which is
subgroup of (C*,-).

Example 110. If (H;);c; is a family of subgroups of a group G, then their intersection is also a
subgroup of G. Let’s check via Proposition 108: Let a,b € ﬂje[ I;. For each j, both a,b belong
to the subgroup I;. Hence ab™! is in I;. Since this holds for all j, ab~!is in njel I;.
Example 111. For n > 2, A,, is a subgroup of S,,. In fact, if 0 and 7 are even permutations,
so is o~ 1. But then also o~ !7 is even. By Proposition 108, A,, is a subgroup.

Example 112. SL,(F) is a subgroup of GL, (F).

39



Lagrange’s theorem

Lemma 113. Let H be a subgroup of a group G. For any a,b € G, there is a bijection between
H and any of the following four sets:

o the set aH = {ah such that h € H};

o the set bH = {bh such that h € H};

o the set Ha = {ha such that h € H};

o the set Hb = {hb such that h € HY}.

Proof. Fix a,b in G. The two functions

v: aH — bH and ¢: bH — aH
r — balz x +— ablz

are well-defined and inverse of one another. This is true for any a,b in G; so in particular, it
is true if we choose a = e. But eH = {eh such that h € H} = H. Thus there is a bijection
between any two of H, aH, and bH. In a completely analogous way, one constructs a bijection
between Ha and Hb. This holds for any a,b in G, so in particular for a = e; but He = H. Thus
there is a bijection between any two of H, Ha, and Hb. O

Theorem 114 (Lagrange). Let G be a finite group with g elements. If H is a subgroup of G
with h elements, then h divides g.

Proof. If H = G there is nothing to show. Otherwise, pick an element a; not in H. Clearly,
a1 = areisin a1 H. If G = HUaq H stop; otherwise, pick an element as not in HU a1 H. Clearly
as € asH. And so on. We claim that H,a1H,a2H ... are all disjoint. Let us prove the claim by
contradiction. Set ag £ e. Suppose there is an z in a;H Na;H, for some 7 < j. So there exist

hi,h; € H such that a;h; = v = a;h;. If we set h &t hihj_l, then h € H and

a; = l’h;l = aihih;1 =a;h € a;H.
A contradiction, a; was chosen outside H U ... Ua;_1H. So the claim is proven. Since G is

finite, the discovery of disjoint classes inside it eventually ends, and we can write
G=HUaHU...U a;H.

But by Lemma 113, these ¢ + 1 disjoint sets all have the same number of elements, namely, h.
So n = (t + 1)h. Hence, h divides n. O

Remark 115. For any subgroup H C G, the sets of the type aH, where a ranges over all
elements of G, are called left cosets of H; since a might be chosen in H, the subgroup H is one
of them. As we saw from Lagrange’s theorem, it can happen that aH = a’H for a # a’. When
G is finite, the total number of left cosets of H is exactly % Similarly, the sets of the type
Ha are called right cosets of H, and with a completely analogous argument, one can show that
when G is finite, the total number of right cosets is exactly ﬁ

2.3 Period and cyclic subgroups

Definition 116. Let a be an element of a group GG. Let z € Z. We define

aa---a (ztimes), if z >0,
a® = e if z=0,

a=l a7l (-z times), if z <O.
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It is clear that the inverse of a™ is (a~!)", which by definition is a ™.

Proposition 117 (Power properties). Let G be a group. Let a be any element of G. For any
integers z,w one has a*a® = a*T and (a*)* = a*".

Proof. Left as exercise. (Hint: Do the case w > 0 and z > 0 first. Then do all other cases.) [

Definition 118 (period/order). Let G be a group. Let a be an element of G. The period of a,
also known in many textbooks as the order of a, is

(a) d¢ef | +oo if all powers of a are distinct,
a t  if t is the smallest positive integer for which a' = e.

Remark 119. The two cases above are mutually exclusive, and cover all possibilities: If the
powers of a are not all distinct, then a® = a" for some z > w, whence using cancellation
(Proposition 105) we get that a*~* = e. So the set of integers n > 0 for which ¢ = e is non
empty. Conversely, if a’ = e, then not all powers of a are distincts, since also a” = e.

Example 120. Consider a = (1,2,3,4) in S5. Since a # e, a® # e, a® # e, but a* = e, then
7(a) = 4. More generally, the period of any k-cycle is k.

Example 121. In any group G, the neutral element e is the only element of period 1.
Example 122. In the group (Q*,-), except for +1, all elements have infinite period.

Lemma 123. Let a be an element of a group G. Let k € N. Then

a* =e < k is a multiple of (a).
Proof. “<” Easy: if k = mn(a), then aF = (a™(@)™ = ™ =e.
“=" Let us perform a Euclidean division k = gr(a) + r with 0 < r < 7(a).
If » = 0 then k is a multiple of m(a) and we are done. If r > 0, we have

e—aF = aqw(a)—i—r _ (aﬁ(a))qar =ela" = a”,
a contradiction with the definition of period: r is smaller than 7(a). O

Proposition 124. If an element a of a group G has period m, then for all k € N the element

k . m
a” has period Zd(mE) -

Proof. Exercise. Hint: Set m/ £ zed(am and k< m, and show that ged(m/, k') = 1 and

that km' = mk’. Use this to show (ak)m/ = e. Now let ¢ be any integer such that (a*)! = a* = e;
you want to show that ¢ is a multiple of m’. But since a** = e, by Lemma 123 kt is a multiple
of m: so write the identity kt = mg, for some ¢ € N, and divide this identity by gcd(m, k). You
get k't = m’q. But kK’ has no common divisor with m/... O

Remark 125. We started this Section very fast, thanks also to the multiplicative notation.
However, we are often going to apply these results to groups where the operation is a sum. It
could be confusing to do the translation, so here is some guidance. In a group like (Z,, +):
e the “positive powers” a' of an element a are obtained by operating a with itself its times,
so they are what we would call the multiples of a; and in general, the powers a®, with
z € Z, of an a in Z,,, are simply its integer multiples {za : z € Z};
e the “power properties” simply become “for all a in Z,, and for all z,w in Z, za + wa =
(z +w)a and z(wa) = (zw)a”;
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e the “period of a” is the smallest positive integer ¢ for which ta = 0 (or +o0, if there is no
such integer); in general, ka = 0 if and only if £ is a multiple of the period of a;
e If an element a has period m, and k € N, then ka has period m.

The same type of “translation” holds for groups like (Z,+), (Q,+), (R,+) and (C, +).

Definition 126 (< a >). Let X be a subset of a group G. We denote by < X > the smallest
subgroup of G containing X (or equivalently, the intersection of all subgroups containing X). If
X consists of a single element a, we write < a > instead of < {a} >.

Lemma 127. For any group G and for any element a € G,
< a>= {a® such that z € Z}
is a subgroup of G with exactly w(a) elements. If w(a) is finite,
<a>= {e,a,a®,a>,... ,a”(a’)_l}.

Proof. For the first equality: if a® and a" are two elements of {a® such that z € Z}, so is
a*(a¥)~! = a*a™™ = a* . Thus by Proposition 108, {a* such that z € Z} is a subgroup. It
contains a' = a. Also, any subgroup of G contaning a must also contains all its powers. Hence,
{a® such that z € Z} is the smallest subgroup containing a, which is what we denoted by < a >.
If w(a) is infinite, then all powers of a are distinct, so < a > has infinitely many elements. Now
suppose m(a) is finite, and let us prove the second identity. The inclusion D is obvious; C follows
from the fact that if z = ¢ - 7(a) + r (Buclidean division), then a* = (a™®)4 . a" = a’. O

Remark 128. In general, < a,b > 2 {a®b' such that 2,¢ € Z}, because the left-hand side
contains also elements of the type ab~'a’a=3b", which we do not know how to rearrange. This
problem would be solved if we knew in advance that a and b commute (that is, ab = ba): Then we
could rewrite ab~ta’b~"a73b® = @b~ and we would have < a,b >= {a® b’ such that z,t € Z}.
In the Exercises you are asked to prove the following fact: if in a group G there are elements
ai,...,a, any two of which commute, i.e. a;a; = a;a; for all 7, j, then

<at,...,an >= {aj* a3?---a;" such that z; € Z}.

Proposition 129. Let G be a finite group with n elements. Then for all a € G, one has a™ = e.

Proof. For each a, the subgroup < a > has cardinality m(a) by Lemma 127. By Lagrange’s
theorem 114 the integer 7(a) divides n. But then by Lemma 123 one has a” = e. O

Theorem 130 (Fermat’s little theorem, 1640). Let p be any prime number. In Z, for any a
one has a? = a mod p. Moreover, for any b € Z such that gcd(b,p) = 1, one has P~ = 1.

Proof. Let us prove the second statement first. Let b be an integer that is not a multiple of p.
If we divide b by p, and write b = gp + r, with 0 < r < p — 1, it is clear that r cannot be a
multiple of p (or else also b would be). So we can view r as an element of U, = Z, \ {0}, which
has p — 1 elements. By Proposition 129, we know that r?~! =1 in U,. Translating it for Z, this
means that 7P~ =1 mod p. Since b = r mod p, by Lemma 54 we conclude that

¥ !1=1 mod p. (4)

This proves the second statement. Moreover, if we multiply Equation (4) by b, by Lemma 54
we get that ¥ = b mod p. So it only remains to show that if a is a multiple of p, then o = a
mod p. But this is obvious: If p divides a, it divides any power of it, so the statement left to
prove boils down to 0 =0 mod p. O

Remark 131. Fermat’s little theorem can also be proven by induction on a: See the exercises
at the end of Chapter 0.
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Cyclic subgroups

Definition 132 (Cyclic groups). A group G is called cyclic if there exists a in G such that
G =< a >. In this case we say that a is a generator for G.

Lemma 133. Let G be a finite group with n elements. G is cyclic if and only if it contains at
least one element of period n.

Proof. By Lemma 127, for any a in G, the subgroup < a > has m(a) elements. O

Definition 134 (Finitely generated groups). We say that a group G is finitely generated, if
G =< X > for some finite subset X of G.

Obviously, all cyclic groups are finitely generated. All finite groups are also finitely generated,
since one could choose X = G.

Example 135. Z, is cyclic: a generator is 1. (Another possible generator is 3. Instead, 2 won’t
do, because the smallest subgroup containing 2 is {0, 2}, not the whole Zj).

Similarly, Us is cyclic. A possible generator is 2. (Another possible generator is 3. Instead, 4
won’t do, because the smallest subgroup containing 4 is {1,4}.) Note that (Z4,+) and (Us,-)
are very similar!

Non-Example 136. Zy x Zo is finitely generated, but not cyclic. The smallest subgroup
containing e = (0,0) is {e}; moreover, for any = # e in Zs X Zga, one has x + x = e, so the
smallest subgroup containing x is {e,x}. Similarly, Us = {1,3,5,7} is not cyclic. The smallest
subgroup containing 1 is {1}; moreover, for any x # 1 in Zg, one has = - x = 1, so the smallest
subgroup containing z is {1,x}. Note that (Zs x Zg,+) and (Us, -) are very similar!

Proposition 137. Every subgroup of (Z,+) is cyclic, of the form < m > for some m € N.

Proof. Let S be a subgroup of (Z,+). If S = {0} then S =< 0 >. Otherwise, let m be the
smallest positive integer in S. Clearly < m > C S. Let us prove the opposite inclusion: For
any s is in .S, the Fuclidean division x = ¢ - m + r, with 0 < r < m, tells us that r = =z — gm
is in S, because in (Z,+) this is how we denote the operation z - (m4)~!. Thus if » > 0 we
have a contradiction with how m was chosen. So r = 0, which means that © = ¢m. Thus
S=<m>. O

Proposition 138. (Q,+) and (Q*,-) are neither cyclic nor finitely generated.
Proof. See the Exercises. O

Next comes a partial converse to Lagrange’s theorem. The dream would be to prove that “if
an integer m divides the size of a group G, then G has a subgroup with m elements”; but this
dream is impossible to reach, because there are counterexamples!

Non-Example 139. The set A4 of even permutations of four elements has size 12. Yet one
can see by inspection that it has no subgroup of size 6.

However, it turns out that a converse statement is true (with an extra bonus!, cyclicity) when
the divisor of the size of G is prime. The next proof is taken from James H. McKay, Another
Proof of Cauchy’s Theorem, American Mathematical Monthly 66 (1959), page 119.

Theorem 140 (Cauchy). If a prime p divides the size of a finite group G, then G has a cyclic
subgroup with p elements.
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Proof. We need to show that some element of G has period p. We are going for something
stronger, namely, that the number of period-p elements is of the form kp — 1 for some positive
integer k. In particular, this number is at least p — 1, which is positive. Say GG has n elements.
Look at the set

def
S = {(z1,22,...,2p) such that z1 -2 ... 1, = €}.
Our first claim is that if (z1,22,...,2p) is in S, so is (xp, z1,x2,...,2p—1). In fact, if
L1 T2 ... Tp =E¢€,

left-multiplying by z, and right-multiplying by z,, 1 we get
Lply -T2 ... Tp—1 = €.

So the first claim is proven. Note that re-applying the first claim over and over, once we know
that (zp, 1, 22,...,2p—1) isin S, then also (zp—1, zp, 21, ..., 2Tp—2) is in S; but then automatically
also (zp—2,Tp_1,%p, T1,...,Tp—3) is in S; and so on. Eventually, what we have proven is that S
is closed under “cyclic shifting” of the components of its points.

Next, we compute the size of S. This is easy: Once we freely choose z1,...,zp—1 in {1,...,n},
there is a unique x;, such that x1 - x2-... -z, = e; so the set S has cardinality nP~L,

Next, we partition S into equivalence classes, as follows. If all components of a p-tuple are
equal, its equivalence class shall consist of only 1 element. If instead we have a (z1,...,z,) with
x; # x; for some 4, j, then the equivalence class of (x1,...,x,) shall consist of the p (different!)
elements

(1,22, .., Tp_1,Tp), (T2, .., Tp—1,Tp, T1), .., (Tp, T1,%2, ..., Tp_1).

So let a be the number of equivalence classes with only one member, and b be the number of
equivalence classes with p members. Since

Pl =a-14+0b-p,

and n is a multiple of p, we obtain that a is also a multiple of p. But by definition, a counts
exactly the elements x such that (z,z,...,z) is in S, which means that 2P = e. So we can
conclude that the equation 2P = e has a number of solutions in G that is a multiple of p. Write
this number as kp. One of the solutions is the neutral element, because e? = e. So there are
exactly kp — 1 elements y different than the identity, such that y? = e. The period of any such
y must divide p, which is a prime number. So the period of any such y is exactly p. ]

Remark 141. There is a theory that allows you to say more. It’s called Sylow theory, after
a Norwegian high school teacher called Ludwig Sylow. In 1872, he proved three important
theorems on this topic. The first Sylow theorem says “If the size of a finite group G is a multiple
of p, with p a prime m € N, then G has a subgroup with p™ elements”. Any such subgroup
is called “a p-subgroup”, and is not necessarily cyclic: For example, G = Zs X Zs has no cyclic
subgroups with 4 elements. The Second and Third Sylow theorems concern the number of
distinct p-subgroups. They imply for example that “if m is the largest integer such that p™
divides the size of a group G, with p a prime, then G has a unique subgroup with p” elements”.
Again G = Zgy X Zs shows that this “maximal p-subgroup” is not cyclic in general.
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2.4 Group homomorphisms

Definition 142. A function f: G — H between two groups (G, *) and (H,-) is called group
homomorphism if

flaxb) = f(a)- f(b).
A Dbijective group homomorphism is called group isomorphism. A group G is isomorphic to a
group H if there exists a group isomorphism from G to H.

Example 143. The inclusion ¢ : Z — Q, ¢(z) = z is an injective (not surjective) group homo-
morphism.

Example 144. The map f(0,0) = 1, f(0,1) = 3, f(1,0) = 5, f(1,1) = 7 is an isomorphism
between (Zg x Zs,+) and (Us, ).

Proposition 145. The inverse of a bijective group homomorphism is a (bijective) group homo-
morphism. In particular, being isomorphic is an equivalence relation on the class of all groups.

Proof. Let f : G — H be an isomorphism between two groups (G, *) and (H,-). Let f~! be
the inverse function. Let hy, hy be elements of H. Since f is a group homomorphism,

! _ _
hy-hy = (ff'(h)) - (ff (o)) = F(F () * £ (ha))
Applying f~! to the previous equality, we obtain that f='(hy - ha) = f~(hy) * f~(h2). O
Proposition 146. Any group homomorphism maps the identity to the identity.
Moreover, the inverse of the image of an element is the image of its inverse.

Proof. Let f : G — H be a group homomorphism from a group (G, x) to a group (H, -). By the
cancellation property (Prop. 105), from f(eq)- f(eq) = f(eq) = em- f(ec) one gets f(eq) = eq.
Similarly from f(a)- f(a™") = f(eq) = en = f(a) - [f(a)] " one gets f(a™") = [f(a)] " [

Proposition 147. The image of any group homomorphism is a subgroup of the codomain.
Moreover, the kernel of any group homomorphism, defined as the set of elements mapped to the
identity, is a subgroup of the domain.

Finally, a group homomorphism is injective if and only if its kernel consists only of the identity.

Proof. Let f: G — H be a group homomorphism from a group (G, *) to a group (H,-). Let
hi1 = f(g1) and he = f(g2) be elements of Im f. So by Proposition 146, applied at the mark,

[
Flar#(g2)™1) = flor) - F((g2)™") = flgr) - [F(g2)) " = hulha) .
So hi[hy]~! is also in Im f. By Proposition 108, Im f is a subgroup of H. Next, consider

{9€G : flg) =en}.
Let g3, g4 be in G such that f(g3) = f(g94) = ey. Applying Proposition 146 at the mark,

Flgs* i) = Flgs) - Floi") = Flgs)  [F(ga)) " = e - e =em.

So by Proposition 108, ker f is a subgroup of G. It remains to show that f is injective if and
only if ker f = {eg}. The direction = is easy: by Proposition 146 we know that f(eq) = f(en),
so if f is injective, no other element can be mapped to ef. As for the converse direction <, we
reason as follows: Suppose f(x) = f(y). Left-multiplying by the inverse of f(x) and applying
Proposition 146 at the mark, we get

e =[f(@)] 7" fly) = fla™) - fly) = fla™"y).

1

def

ker f

So zy~! belongs to ker f. But ker f = {eg}, so 2y~ = eg. Which means z = . O
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Example 148. Consider the groups (R*,-) and (R,+). The function f : R* — R defined by
f(x) = log(x?) is a surjective group homomorphism: f(xy) = log(zy)? = 2logx + 2logy =
f(x) + f(y). Since the neutral element of (R,+) is 0, ker f = {z : logz? = 0} = {x : 22 =
1} = {—1,+1}. Note that for any group homomorphism F : (R*,:) — (R, +), the kernel of
F has to contain both —1 and 1, because from (—1)2 = 1 and Proposition 146 it follows that
F(-1)+ F(—1) =0, whence F(—1) = 0. In particular, (R*,-) is not isomorphic to (R, +).

Example 149. Let n be any positive integer. The map

g (R+) — (Rso,)
T — e*

is a group isomorphism: g, (z +y) = e"*tY) = " . ™ = g () - g, f(y).
Example 150. Let F be any of Q, R, C, or Z,, with p prime. Let F* “F \ {0}. Consider

f: (GLn(F)ax) — (F*v)
A — det A.

By Cauchy—Binet’s theorem, f is a group homomorphism. Its kernel is SL, (F). Its image is all
of F*: In fact, for any = in F*, the matrix M with my; =z, m;; = 1 for all ¢ > 1, and m; ; = 0
for all ¢ # j, has determinant x.

Example 151 (Orthogonal matrices and rotations). The orthogonal group is defined as

On(F) £ {n x n matrices A with entries in F such that A AT = I},

with F as in the previous example. By Cauchy-Binet’s theorem, 1 = det A det AT = (det A)?,
so matrices in O, (F) have determinant +1 and O, (F) is also a subgroup of GL,(K). Set

f: (On(F)7X) — ({_171}7‘)
A — det A.

The kernel is called the rotation group SO, (F). By definition, SO, (F) = O, (F) N SL,(F).

Example 152. Let (F,+) be the subgroup of Z formed by the even numbers (i.e. £ =< 2 >).
Let f:(Z,+) — (F,+) be the map f(z) = 2z. This map is a bijective group homomorphism.

Example 153. Let f : (Z19,+) — (Z10,+) be the map defined by f(z) = 2z. This map is
a group homomorphism. It is not injective: f(0) = f(5) = 0. It is not surjective, because its
image corresponds to the subgroup of Zig generated by 2.

Example 154. Let f : (Z11,+) — (Z11,+) be the map defined by f(x) = 2x. This map is a
bijective group homomorphism.

Non-Example 155. Let f : (Z19,+) — (Z11,+) be the function defined by f(z) = 2x. This is
not a group homomorphism! In fact, f(5+7) = f(2) = 4, whereas f(5) + f(7) =10+ 3 = 2.

Example 156. Let f : (Z19,+) — (Z12,+) be the function defined by f(z) = 2z. This is a
group homomorphism! It is not injective, but it is surjective.

Example 157. Let f : (Z10,+) — (Za2,+) be the function defined by f(z) = 2z. This is a
group homomorphism! It is injective, but not surjective.
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Proposition 158. For any group homomorphism f : G — H, and for each x € G, the period
of f(z) divides the period of x.
t

Proof. Let t be the period of . From 2! = eqg, we get (f(z))" = f(z') = f(eg). But by
Proposition 146 we know that f(eq) = er. So (f(x))" = er. By Lemma 123, this means that
the period of f(z) divides t. O

Corollary 159. If gcd(m,n) =1, the only group homomorphism between (Zy,,+) and (Zy,+)
is the zero homomorphism.

Proof. Let f : Zy, — Zy, be an arbitrary group homomorphism and set y < f(1). By Proposi-
tion 158, the period of y divides 7(1) = m. By Proposition 129, the period of y divides also n.
So, since ged(m,n) = 1, the period of y must be 1. So y = 0. O

Remark 160. It is a nice exercise to prove that the number of distinct group homomorphisms
between Z,, and Z,, is gcd(m, n). Hints: (1) show that every group homomorphism f : Z,,, — Zj,
is of the form f(z) = f(1) -z, with 0 < f(1) < n — 1; (2) show that any function f : Z,, — Zj,
defined by f(z) =z - 2z, with 0 <2 <n — 1, is a group homomorphism if and only

z-m=0 mod n.

(3) But the above equation in x has exactly ged(m, n) solutions, namely,
n
=

=k for k € {0,1,...,gcd —1}.
gcd(m’ n) ? or 6 { Y Y 7gc (m7 n) }

Theorem 161. Every infinite cyclic group is isomorphic to (Z,+).
Every cyclic group with m elements is isomorphic to (Zp,+).

Proof. Suppose G =< a >. If m(a) = oo, then consider the function ¢ from (Z,+) to (G, ) that
sends z to a®. This is a surjective group homomorphism; injectivity follows from the fact that
all powers of a are distinct, since 7(a) = co. Thus (Z,+) and (G, ) are isomorphic. If instead
m(a) = m, then consider the function ¢ from (Z,,,+) to (G, *) that sends z to a*. Again, it is
easy to see that this is a surjective group homomorphism; moreover, by Lemma 123, ¢)(z) = e
if and only if z = 0. So ker¢ = {0} = {ez,, }. This means 1) is injective. O

We conclude this section with a result that shows how important permutation groups are.

Theorem 162 (Cayley). Every group (G,-) is isomorphic to a subgroup of the group of all
bijective functions from G to G. In particular, every group with n elements is (isomorphic to)
some subgroup of Sy,.

def

Proof. Set I' = {0 : G — G bijective}. We have seen in Example 95 that I" is a group with
respect to composition. Now given an element a € G, we may define a function v, by

Yo: G — G
xr —> ar.

Note that =, is injective (because ax = ay implies z = y by Prop. 105) and surjective (because
every g € G can be written as g = a(a"'g) = v.(a"'g).) So 7, is an element of T'. In fact, the
inverse of the bijection ~, is the map 7,-1, which sends = to a~'z. Now set

T < {4, such that a € G}.

We claim that T is a subgroup, and not just a subset, of I'. In fact, for any two elements ~,,
v of T, the function 7, o 7y, is simply v4p; and so vy, o (v,) ! is simply -1, which is in 7. To
complete the proof, it is easy to see that the function that sends a to -y, is the desired bijection
from G to T. O
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2.5 Exercises

1. Prove that (Q,+) and (Q*,-) are not cyclic.

2. Prove the following fact: if in a group G there are elements a1, ...,a, any two of which
commute, i.e. a;a; = aja; for all 7, j, then

<ai,...,ap, >= {aj' a3’ ---aZ" such that z; € Z}.

n

3. Prove that (Q,+) and (Q*,-) are not finitely generated.

4. In GLy(R), what is the period of the element a = ( _11 (1) >?

5. Write down an explicit group isomorphism between (Z4,+) and (Us, -).

6. Let x,y be two group elements such that z20® = 42019 and zyr = yry. Prove that

r=y=e.
7. For any groups G, H, K, prove that G x (H x K) is isomorphic to (G x H) x K.
8. Prove Remark 160.

9. Prove that if a subgroup of S5 contains (1,...,5) and (1,2), then it is the whole Ss.
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3 Normal subgroups, quotients, and Abelian groups

3.1 Normal subgroups

Definition 163 (Normal). A subgroup H of G is called normal (in G) if for each g € G, for
each h € H, ghg™' € H.

Non-Example 164. Consider in G = G L2(R) the subgroup H = UT5(R) of upper triangular
matrices with nonzero determinant. This H is a subgroup that is not normal. In fact, choosing

(11 (01 (10
h-(o 1) andg—<1 0), one has ghg —<1 1>¢UT2(]R).

Example 165. Given any group G, the subgroups H = {0} and H = G are always normal.

Example 166. Given any homomorphism f : G — H, the subgroup ker f is always normal in
G. In fact, if f(k) = ey, then for every g in G we have

flakg™) = f9)f(R)f(g™") = f(@enflog™") = Fl@)flg™") = flagg™") = fleq),

which is equal to ey by Proposition 146. So gkg~' € ker f.

1 1

Remark 167. If the elements g and h commute, then ghg™" = hgg~" = h. So certainly in
groups where the operation is commutative, like (Z,+) or (Q*,-), every subgroup is normal.
However, there exist groups G where every subgroup is normal, yet the operation is not com-
mutative. One such group, the 8-element quaternion group, is explained in the Exercises.

Lemma 168. Let H be a subgroup of a group G. The following are equivalent:

(1) H is normal.

(2) For each g in G, for any h € H, there is a k in H such that gh = kg.

(3) For each g in G, gH = {gh such that h € H} and Hg = {hg such that g € G} coincide.
(4) For each a,b € G, ab~' € H if and only if a='b € H.

Proof. (1) = (2): We know that ghg~! € H. Setting k = ghg™!, we have kg = gh.

(2) = (3): gH C Hyg, because any element of the form gh can also be rewritten in the form kg
for some k € H. Symmetrically, Hg C gH. So gH = Hg.

(3) = (4): Suppose ab~' € H. Set h ™ ab~!. Then a = ab~'b = hb € Hb. Since by assumption
Hb C bH, it follows that a = bk for some k € H. So a™'b= (bk)'b=k""0"'b =k is
in H. The converse implication is similar: if k = b~'a € H, then a = bk € bH C Hb, so
we can find h € H such that a = hb. Hence, ab™! = h € H.

(4) = (1): For every h in H and for every G in G, we want to show that ghg~! is in H. In
other words, if we set a « gh and b « g , we want to show that ab™! is in H. But by the
assumption, this is equivalent to proving that a='b € H. But a b =h"lg7lg=nh"1. O

Proposition 169. If a subgroup H of G contains half of the elements of G, then H is normal.

Proof. Let x be an element of G that is not in H. The set xH is disjoint from H and has the
same number of elements of H (cf. Lemma 113), so zH is simply the complement of H. The
same applies to Hx. But then xt H = Hz, so by Lemma 168 H is normal. ]

Corollary 170. The set A, o {even permutations} is a normal subgroup of S,,.
Proof. This follows straightforwardly either from the definition, or from the fact that A, has
half the elements of S,, (cf. Proposition 83.) O
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Proposition 171. Let H, K be two normal subgroups of a group G. If H N K = (e), then the
smallest subgroup of G containing both H and K is isomorphic to H x K.

Proof. For any h in H and for any k in K, consider hk(kh)~!. Since we can write it as
(hkh~1)k~1, and hkh™! € K by the normality of K in G, we see that hk(kh)~! is a prod-
uct of two elements in K; so it is itself in K. But at the same time hk(kh)™! = h(kh~1k~1),
which by the normality of H is a product of two elements of H; so hk(kh)~! is in H. Hence
hk(kh)~! is in H N K, which by assumption consists only of the identity. But hk(kh)™! = e
means hk = kh. So we have proven that any element of H commutes with any element of K.

Now let us set
p: HxK — G

(h,k) +— hk.

Is it a group homomorphism? Indeed, since h’ commutes with &,
(h. k) - (I ') = hk - WK = Wi - kK = o(hl  kK') = o((h, ) - (W, K).

Let us check that ¢ is injective. Assume hk = e. Then h™! = h™'e = h='hk = k. Since
h~' € H, we have that k = h~! € HN K, which implies k¥ = e, so h = e. Hence ¢ is injective.
So H x K is isomorphic to Im ¢ = {hk such that h € H,k € K}.

To conclude our proof, it remains to show that Im ¢ is the smallest subgroup containing H
and K. Indeed Im ¢ contains any element h of H, which can be written as h = he. Symmetri-
cally, it contains any element of K, by writing it as £ = ek. Finally, any subgroup containing
H and K must contain the products of their elements; so it must contain Im . ]

3.2 Quotients and the First Isomorphism Theorem

Definition 172. Let H be a normal subgroup of G. Let ~p be the associated relation of
equivalence
a~b< a7 he H.

Because of normality, we can equivalently write “l bl e H ”. of course. The quotient
G/H & (g such that g € G},
is the set of all classes of equivalences.

Proposition 173. The classes of equivalence of ~ are the “cosets” aH, as a ranges over G. In
particular, if G is finite, then the quotient

G/H (g such that g € GY,

has exactly % elements.

Proof. For any a,b in G,

def

a~b<= 3h e H such that a ‘b = h —= 3h € H such that b = ah < b € aH.

So the set of elements in a relation with a is precisely the set aH, which we called “left coset”.
Hence, the elements of G / 7 are the various left cosets. (Because of normality, each aH is equal

to HA, so the elements of G / 7 are also the right cosets.) By Theorem 114, when G is finite,
there are precisely % left cosets. O
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Theorem 174. Let H be a normal subgroup of G. Then G/H s a group with respect to

axb £ ab
Such operation makes the map
: G — G/H
g — g,
called projection, a surjective group homomorphism with kernel H.

Proof. The fact that H is normal is crucial to verify that the operation is well defined. In fact,
if 2/ ~ 2 and i ~ y, then h, = 2’z~! and h, = y/y ! both belong to H. Now

1,.-1

2y (vy) Tt = 2/y'y et = 2’ hya

Since H is normal, we can write 2’h, = ka', for some k € H. So we can continue the chain of
equalities with
:U’hyx_l = ka'z™! = khy,

which is an element of H. Hence, 2'y/(xy) "' € H, which means that 2'y’ ~ xy. This shows that
the operation is well defined. The rest is easy: The neutral element is €, where e is the neutral
element of G, and the inverse of Z is p(z~!) = z~1.

As for the second claim, the very definition of the operation ensures that 7 is a homomorphism.
Surjectivity is because of the way G / g7 is defined. It remains to compute kerm. When is g

equal to the neutral element of G / F» which is €7 By the way ~ was defined,
E=g < e lgeH.
Hence, kerm={ge€ G :gec H} = H. O

Corollary 175. Kernels of group homomorphisms and normal subgroups are the same objects.
Proof. We have already seen that kernels of homomorphisms are normal. Converely, if H is

normal in G, then H is the kernel of the projection 7 : G — G/H. 0

Example 176. In (Z,+), any two elements commute, so every subgroup is normal. Fix an
integer m > 2 and consider the subgroup H =< m >. Since the group is additive, H consists
of all multiples of m, and the associated equivalence relation on Z is

a~b<S b _aecH.

Thus ~ is simply “congruence mod m”. The quotient L / < m > consists of exactly m elements,

Z / <m> I8 simply the map that sends

z to the remainder of the division of z by m. So we see that Z / <m> coincides with Z,.

namely, 0,1,...,m — 1; and the projection 7 from Z to

Proposition 177. Any quotient of (Z,+) is isomorphic either to (Z,+), or to {0}, or to
(Zp,, +), with m > 2.

Proof. By Proposition 177, all subgroups of Z are of the form < m > for some m € N. They
are all normal, because in Z any two elements commute. So all quotients of Z are isomorphic
either to Z (case m = 0), or to {0} (case m = 1), or to Z,, (case m > 2). O

Remark 178. We have defined the quotients only for normal subgroups. For any group G, for
any x € G, and for any normal subgroup H of G, from now on we will adopt the notation = to
indicate the image of x under the projection 7. We have two slogans to remember:

e 7 = ¢ if and only if z € H;

e 7 =7 if and only if 271y € H. (Or equivalently, if and only if zy~! € H.)
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First Isomorphism Theorem

Recall that for any normal subgroup N in a group G, the projection 7 : G — G / N is the
surjective ring homomorphism that sends z to its class of equivalence 7.

Theorem 179 (First Homomorphism Theorem for Groups, Noether 1927). For any group
homomorphism f : A — B, there exist a (unique) group homomorphism

A
g: /kerf—>B

such that (1) g is injective, (2) Img = Im f, and (3) f = gom, where ™ :— A/kerf is the
projection..
Z;hus, if there is a surjective group homomorphism f : A — B, then B is isomorphic to

/ker f
Proof. Let us start from the end. Let us force property number (3) by defining

9(@) = f(a) for all a.

Is this a good definition? If a,d’ are distinct elements of A such that @ = «/, is it true that
f(a) = f(a’)? By definition of quotient, ¢’ = @ if and only if a’a™! € ker f, if and only if
ep = f(a’a™!). Multiplying both sides by f(a), this is the same as saying, f(a) = f(a’'a™!)f(a);
but the right-hand side equals f(a’a='a), which is f(a’). So summing up,

@ —ain A/kerf = fla) = f(a') <= g(@) = g(d).

The stream of implications from left to right tells us that ¢ is a well-defined function; the converse
implications, from right to left, tell us that g is injective.
It remains to see that Im g = Im f. But this is easy: for any b € B, we have

def

b € Img <= Ja € A such that g(a) = b <= Ja € A such that f(a) =b<=becImf.

This proves the first part. In the particular case where f is surjective, the group homomorphism
g we obtained is not only injective but also surjective, since Im ¢ = Im f; and so in this case the
g we constructed is an isomorphism. O

Example 180. In Example 148 we described a surjective group homomorphism f from (R*,-)
o (R,+), defined by f(z) = log(x?). We also computed ker f = {—1,1}. Thus, by Theorem
179,
R*
{_17 1}
Example 181. In Example 150 we introduced SL,(K) as kernel. By Theorem 179,
GL.(F)
SL,(F)
Similarly (cf. Example 151), for any n > 2,
On(F)
SO, (F)
Example 182. Consider the surjective group homomorphism
m: GxH — G

is isomorphic to (R, +).

is isomorphic to F*.

is isomorphic to F*.

(9,h) — g
Since ker m; = {(g, h) such that g = eq} = {eq} x H, by Theorem 179 we have that
GxH
{eG}XxH is isomorphic to G.
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3.3 Abelian Groups and the Chinese Remainders theorem

Definition 183 (Abelian). A group G is called Abelian if its operation satisfies the commutative
property, that is, for each z,y in G one has zy = yx.

You are already familiar with several groups that satisfy this property. On the other hand,
you also know many finite groups that are mot Abelian, like the permutation group S3. In
particular, “finitely-generated” does not imply “Abelian’, except when the finite number of
generators is “one”:

Proposition 184. Fvery cyclic group is Abelian.
Proof. If G =< a >, for any z,w integers one has a*a¥ = a*T% = %% = a%a?. O
The converse is obviously false: (Qx,-) is not cyclic, and not even finitely generated.

Now, it is easy to see (exercise!) that the Cartesian product of two Abelian groups is Abelian.
In contrast, the products of two cyclic groups is sometimes cyclic, and sometimes not:

Theorem 185. Let A, B be two cyclic groups with a and b elements, respectively. Then:
e Ifged(a,b) =1, then A X B is cyclic.
e Ifged(a,b) = d > 1, then the period of every element of A x B divides %b, so in particular
A x B is not cyclic.

Proof. By definition of product group, (z,y)! = (2!, 3'). So using Lemma 123,

()

e If gcd(a,b) = 1, choose (z,y) in A x B such that A =< & > and B =< y >. Clearly
m(x) = a and 7(y) = b. Since they have no common factor, any number that is multiple
of both a,b must also be a multiple of ab. Hence the coimplication (5) becomes

t= tis ltiple of
xt=ey { is a multiple of 7(x)

t_
(,y)" = (ea,ep) <= { yt =ep t is a multiple of 7(y).

(z,y)" = (ea,ep) <= t is a multiple of ab.

e If ged(a,b) =d > 1, set o d:ef% and b’ & 3. For any (z,y) in A x B, we know that 2% = ey

and 3® = ep by definition of period. In particular, 2 = e, because ab’ is a multiple of
a; and y® = ep, because ab’ = a/db’ = b is a multiple of b. So (z,7)® = (ea,ep). O

Corollary 186. Z, x Zy is isomorphic to Zq, <= ged(a,b) = 1.

Proof. By Theorem 185, Z, X Zj has an element of period ab if and only if ged(a,b) = 1. O

Lemma 187. Let my,...,my be positive integers such that gcd(m;, m;) =1 for all i # j. Set

def .
m=mi1ma---My. For any Znteger x,

m divides x <= each m; divides x.

Proof. The direction ‘=" is trivial, so let us focus on ‘<=’. Let p be a prime that divides m. By
Euclid’s Lemma 14, p divides at least one of the m;’s; but because the ged of any two m;’s is 1,
this p divides at most one of the m;’s. Conclusion: p divides exactly one of the m;’s. So if

m = p(fl p(212 ka
then each m; is either of the form m; = p?j , or (up to reordering the p;’s) of the form
m; = py’piih' - p;lf;;zh for some j € {1,...,k}, he {1,...,k—j}.
So if an integer x is a multiple of all m;’s, it means that the exponent of each p; in the factor-

ization of x is a; or larger. So m divides x. O
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Theorem 188 (Chinese Remainder Theorem). Let my,...,m, € N with gcd(m;, m;) =1 for
all i # j. Setm “ mams - my,. For any x in Z with 0 < x < m — 1, let us denote by [x]; its
equivalence class modulo m;. Then the “multi-projection” function

I: Zpyw — Zp,xX ...X Znp,
r — ([z]1, .., [z]n)

is a group isomorphism. Moreover, ged(xz,m) = 1 if and only if ged([x];, m;) = 1 for all i.

Proof. First of all, II is injective: in fact, for any integer y in {0,...,m — 1}, we have that

€] . € . . ! . .
II(z) = I(y) N [z]; = [y]; for all 4 <L each m; divides z—y <= m divides z—y <> z =y,

where the second-last equivalence is by the previous Lemma, and the last equivalence is because
both z,y are between 0 and m — 1. Notice that the finite sets Z,, and Z,, X ... X Z,, have the
same number of elements, so any injective function between them is automatically surjective. So
to conclude that II is a group isomorphism, we only need to show that II(x +y) = II(z) + II(y),
for all z,y in {0,...,m — 1}. To do this, we need to perform 2n divisions:

e For all i € {0,...,n}, let x = ¢ym; + r;, with 0 < r; < m;.

e For all i € {0,...,n}, let y = ¢im; + 7}, with 0 < 7} < m,.
Then by definition

H('T) +H(y) = (7“1,7“2, s 7Tn) + (7“/1,7“5, s 77";1) = ([7‘1 +T,1]1’ [TQ +ré]2 SRR [Tn "’T;L]n) : (6)

But at the same time, x +y = (¢; + ¢,)m; + (ri + 7). So modulo m;, z+y is congruent to r; + 7.
In other words, in each Z,,, we have [z + y]; = [r; + 7}};. But then

Mz +y) = [z + yl, [z +ylo, - e+ yln) = (r+ il e+ 752 [ra +rpln) - (7)

Putting together Equations (6) and (7), we conclude that II is a group isomorphism.

As for the second claim: Suppose that for some ¢ we have ged([z];,m;) > 1. Let p be any
prime that divides both [z]; and m;. Since x = ¢;m; + [z];, the prime p obviously divides x
as well. Also, since p divides m;, it divides m as well. So ged(z,m) > 1. Conversely, suppose
that ged(x,m) > 1. Let p’ be any prime that divides both z and m. By Euclid’s Lemma, there
is an ¢ such that p’ divides m;. Since x = ¢;m; + [z];, it follows that p’ divides also [z];. So

ged)([z]i, mi) > 1. O
Corollary 189 (also cited as ‘Chinese Remainder Theorem’; Sunzi, 3rd Century AD). Let
mi, ..., My be positive integers such that ged(m;, mj) =1 for all i # j. Set m E mimg - may,.
For any a1, ...,a, in N, the system

= a; modmy

T = a9 mod my

(8)

= a, modm,
admits a unique solution xq in {0,...,m—1}. Moreover, any further integer solution is congruent
to such xg modulo m.
Proof. By Theorem 188, for any ay,...,a, in N there is a unique element z in Z,, such that

H(‘T) = ([a1h7 ceey [an]n)-

Thus the set of solutions to Sunzi;’s problem is given by all integers z such that z = x in Z,,.
This is simply the set {z + km : k € Z}. O
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Remark 190. “There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are left over. How
many things are there?” (Sunzi Suanjing, 500 AD). To re-phrase: Is there a natural number
x congruent to 2 mod 3, congruent to 3 mod 5, and congruent to 2 mod 7? In view of the
previous theorem, there should be, because 3,5,7 are pairwise coprime. In fact, we expect a
unique solution z with 0 < « < -5-7 = 105; and once we find z, we can get infinitely many
other integer solutions simply by repeatedly adding 105. So how do we find the smallest positive
solution? Here is a hint for a possible, simple (though not so fast) algorithm, called sieving. We
start with the largest “mod”, which is 7. The positive integers congruent to 2 mod 7 are

2,9,16,23,...,Tk+2,...
Within this list, we select the integers also congruent to 3 mod 5. The smallest is 23:
23,58,93,128,...,(7-5)k +23,...

Finally, within this second list, we select the integers also congruent to 2 mod 3. The remaining
list contains all positive solutions to Sunzi’s problem, with 23 being the smallest:

23,128,...,(7-5-3)k +23,......

The totient function

Definition 191. For any integer m > 2, the totient function ¢(m) counts the positive integers
coprime with m and smaller than m. Equivalently, ¢(m) is the size of the group U,,.

Remark 192. By definition, 1 < ¢(m) < m — 1. The lower bound is because 1 is coprime with
m for all m. As for the upper bound, ¢(m) = m — 1 if and only if m is prime. In fact, if m is
composite, then m = ab with 1 < a <m, so Up, C Zy,, —{0,a}. So ¢(m) < m — 2.

An obvious consequence of Proposition 129 is the following extension of the Fermat Little
Theorem 130, which represents the case m = p prime (where as we said, ¢(p) =p — 1):

Theorem 193 (“Euler Theorem”). For all a in U, one has a®™ = 1.
Proof. |Un| = ¢(m) and ey,, = 1, so by Proposition 129 a®(™ =1 for all a. O

Remark 194. Not necessarily ¢(m) is the smallest integer such that a?™ =1 for all a in Uyy,.
For example, Ug = {1,3,5,7}, so ¢(8) = 4, but every = of Uy satisfies 22 = 1.

The Chinese remainder theorem has another important consequence for the totient function:

Lemma 195. Let mq,...,my be integers larger than 1, such that gcd(m;, m;) =1 for alli # j.
Then ¢(mimz - my) = ¢(ma) - p(ma) - - - p(mn).

Proof. Set m E mams - - ma,. By the second part of Theorem 188, II restricts to a bijection
{ invertible in Z,,} = { invertible in Z,,, } x { invertible in Z,,,} x - -- x { invertible in Z,,,, }.

The n + 1 sets above have precisely ¢(m), ¢(m1), ¢(ma), ..., ¢(my) elements, respectively. [

Lemma 196. If m = p® is a prime power, then ¢(m) = p® — p®~1 = p?(1 — %)

Proof. Among the integers from 1 to p%, those not coprime with p® are simply the multiples of

p, and there are p®~! of them. So the remaining p® — p®~! numbers are those coprime with p?.
In conclusion, ¢(m) = p® — p®~!, which is just another way to write p®(1 — %) O
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Theorem 197 (Euler). For any integer m > 2,

w-n T (D)

p prime divisor of m

Proof. Suppose m factors as
n— pzlnpgg . .ka.

Setting m; d:efp;-” forall t =1,2,...,k, and applying Lemmas 195 and 196, we obtain

o) = otm) ot =5t (1= L) (1= D) = (1= 1) (1= 1)

Example 198. The invertible elements in Zsgg are exactly 200 (1 — %) (1 — %) = 80. Instead,
the invertible elements in Zo1g are 210 (1 — %) (1 — %) (1 — %) (1 — %) = 48.

Corollary 199. For any integer n, \/g <¢(n)<n-—1.

Proof. The upper bound is attained when n is prime. Let us show the lower bound”. By Lemmas
195 and 196 the quantity ¢(n) is the product of factors of the type p®~!(p — 1). We wish to
bound from below each of these factors. Our first claim is:

If (p,a) # (2,1), then p*Y(p—1) > (v/p)*. (9)

In fact, for a > 2, inequality (9) is obvious: since a—1 > §, we have p*tp—1) > p*t > (/)
If instead a = 1, inequality (9) simplifies to p —1 > ,/p, so it becomes a calculus exercise to
check that (p — 1)2 > p if and only if p € (—oo0, %) U (%, 00). So for p = 2 the inequality

is actually false, but it is true for every other prime p > 3 > % Our next claim is:
Unless n is twice an odd integer, é(n) > /n. (10)

In fact, “n is twice an odd integer” if and only if “in the factorization of n, one of the factors
is p® with (p,a) = (1,2)”. So if n is not twice an odd integer, then every factor of the type
p* H(p—1) in ¢(n), since(p, a) # (2,1), will be at least (\/p)®, by inequality (9). So we compute

o(m) =P o1 — 1) o — 1) 2 VBT VB = B = Vi

We are now ready to prove the theorem. We distinguish two cases: If n is not twice an odd
number, then by Inequality 10 ¢(n) > /n > \/g If instead n = 2n/ with n’ odd, then in
particular n’ is not twice an odd number, so Inequality 10 tells us that ¢(n') > Vvn! and

<WFMMWhMMzﬁe¢; g

Deeper thoughts 200. With much more effort, the lower bound above can be improved a lot:
There are lower bounds proportional to i z o o There are many open problems on the totient
function. In 1922, Carmichael conjectured that there is no number m with an exclusive totient:
that is, a number m such that for all n # m one has ¢(n) # ¢(m). In 1932, Lehmer conjectured
that for no composite number n, ¢(n) divides n — 1. Since for prime numbers ¢(p) does divide
p— 1 (they are equall), Lehmer’s conjecture can be rephrased as “¢(n) divides n — 1 if and only

if n is prime”.

9Proof by F. Nicolas, A simple, polynomial-time algorithm for the matriz torsion problem, arXiv:0806.2068.
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3.4 Finite Abelian groups are products of cyclic groups

In this section we will prove two famous results: (1) a converse of Lagrange theorem for Abelian
groups; (2) Gauss’ famous theorem that if m is prime, then U, is cyclic. The gateway to both
is a structural results on finite Abelian groups. Namely, we are going to show that they are all
(isomorphic to) products of cyclic groups.

Remark 201. The Cartesian product of sets is “associative” and “commutative” up to isomor-
phism. By this we mean that there are obvious group isomorphisms
fi: GxH — HxG fo: GXx(HxK) — (GxH)xK

(@h) — (hg) (6, (k) —  ((9,h) )

Therefore we usually adopt the following conventions: (1) In case we have a Cartesian product
of finite cyclic groups, we rearrange the groups by increasing number of elements; (2) when
we have a Cartesian product of three or more groups, we omit the brackets. So we will write
Zo X Lo X Zs instead of Zg x (ZQ X Zg).

Example 202. The two 60-element groups Zs X Zsg and Zg X Z1 are not cyclic. Using Corollary
186 (and the notation of Remark 201) we can break them further.

Zio X 730 §ZQ><(ZgXZlD)§Z2XZgX(ZQXZ5)gZQXZQ><ZgXZ5
ZGXZH) g(ZQXZg)X(ZQXZ5)2Z2XZQX23XZ5.

So they are isomorphic to one another! Remember though that we cannot split Z,, further
if m is a prime power. So for example

Lo = Ly X Loy = Ly X Ly X Ls,

but we are not allowed to split Z,4 further, because Z4 is not Zs X Zo, by Corollary 186. So Zgg
is a different Abelian group than Zs x Zsg.

At the moment we see only two distinct Abelian groups with 60 elements. Of course, if we
proved that every Abelian groups is a product of cyclic groups, we could immediately conclude
that there are only two distinct Abelian groups with 60 elements. So let us prove it!

Lemma 203. Let G =< g1, ...,gn > be an Abelian group. Let a1, ..., a, be any list of integers,
possibly with repetitions, with ged(ay,...,a,) = 1. Then there is another list of n generators for
ai _as

G that includes the element g\" 95> - - - gor.

Proof. By Proposition 93, there is an integer matrix A of determinant 1 whose first row is

ai,...,an. Let a;; be the element in the i-th row, j-th column of A. Define
2 g gy gt (11)
We claim {z1,...,x,} is the desired generating set. Let us prove it. First of all
z1=g" gy gt = gl s g
Moreover, g1,...,g, are in G, so every x; is obviously in G. It remains to show is that G =<
Z1,...,2n >. To see this, consider the matrix B = A~1. Since A has determinant 1, B has also
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integer entries (this follows by the Cofactor Formula for calculating the inverse matrix). Let bj
be the element in the j-th row, k-th column of B. Using Equation 11, we compute

()b e oo fo) o =

= (4" aln)b (gt - .ggzn)bﬁ co (gt gy bjn _
_ ( 5,101,1 J 1010 (glbj,zcm,l » 'Qri)] 202,n\ (glbjmanJ B .gr?j,n(ln,n> _
= (gl) 7ka’k 1. (92)2?:1 b.j,kak,Q .. ( )27;:1 bj,kakﬁl —
|
= (91)° (92)° -+ (g5-1)" - (g)" - (ng) - (gn)° = g5

where the marked equality is due to the fact that > | b; pax ¢ is the (j, £)-entry of the matrix
BA, which is the identity matrix; but the (j,¢)-entry of the identity matrix is always 0, unless

j = ¢, in which case it is equal to 1. So in conclusion, for every j € {1,...,n}, we have
gj ::clbj’l xf;]" (12)

Equation 12 tells us that every g; is in < x1,...,2, >.
SoG=<gi,..-,9n > C < x1,...,2, > C G, which implies G =< x1,...,x, >. O

Theorem 204 (Smith 1861, Kronecker 1870). Fuvery finite Abelian group G is isomorphic to
the product of cyclic groups.

Proof by E. Schenkman. The idea is to proceed by induction on the smallest number of gener-
ators n of G. If n = 1, then G is cyclic, and we are done. Suppose now n > 2. Let g; be an
element of smallest period among those elements that form a generating set of n elements for
G. So to recap our assumptions:

e there are elements go, ..., g, so that G =< g1, ..., gn >;

e any subset X C G with less than n elements cannot be a generating set for G;

e no element = with 7r( ) < m(g1) can be part of a size-n generating set for G.
Set H < g1 > and K < g2,...,9, >. Being generated by less than n elements, K is by
inductive assumption a product of cyclic groups. H is clearly cyclic. What we want to show
is that G = H x K. But via Proposition 171, all we need to show is that H N K = (e). (The
normality of H, K is automatic, because G is Abelian; the smallest subgroup containing both
H and K is < ¢g1,...,9, >= G.) So let us prove that H N K C (e), the other inclusion being
obvious. By contradiction, suppose there exists a z # e inside H N K. Since z € H =< g1 >,

we can write z = g7* for some a; € {1,...,k —1}. Also, z € K, so z = gy*g5* - go» for some
as,...,an € N. Set d & ged(ag, ag, ..., a,). Because d is the greatest common divisor of the
a;’s, the integers —<+, %2 ... % have gcd equal to 1. By Lemma 203, we can find another

generating set of size n for G that includes the element

&‘,_.‘3

def — aTn

az

By construction,
al =g Mg g = (g (957 =2 2=
So 7(x) divides d. In turn, d divides a;, which was smaller than k. This implies that
m(x) <d<ay <k=m(q),

a contradiction with how g; was chosen. O
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Corollary 205. For every finite Abelian group G, there exist natural numbers h, my,...,mp
and prime numbers p1 < ... < pp (not necessarily distinct), such that G can be decomposed as

~
G_Zp;nl XZp;nz X ... XZPZLh'

Proof. Using Corollary 186 (and the notation of Remark 201), we have seen that it is possible to
break up every finite cyclic group until it is the product of cyclic groups whose sizes are prime
powers (not necessarily distinct). Compare Example 202. O

Corollary 206 (Converse of Lagrange for Abelian groups). Let G be a finite Abelian group.
If d is a diwvisor of |G|, then G has a subgroup with exactly d elements.

Proof. By Corollary 205,
G = Zymy X Ly X ... X Lyymn, With |G| = p{"'py? - ppim

Since d divides |G|, each prime factor of d is also a factor of |G|; so by the Unique Factorization
theorem, d must decompose as

d= p1 p2 "'pZ", with d; < m; for each i.
Now, in the additive group (Zp;’ll ,+) there is an element of period pclll, namely, the element

def —
ai épam a

my—d

(In fact, by construction p‘li1 . p1 'py = p"" =0.) In particular, the subgroup
Ay e s

has exactly p1 elements. Similarly, inside Z i the subgroup A4; L it 4 > has exactly p?"
elements. It follows that the subgroup we are lookmg for is

Hd:efAlezx...xAn. O

3.5 Exercises

1. Let G be a group with 2p elements, p prime. Prove that if every element of G has period
1 or 2, then GG is Abelian. Use this to show that G contains a subgroup with p elements.
(Hint: what can the period of an element x # e be?)

2. Given n € N, find the smallest m such that S, contains a cyclic subgroup of size n.
(Hint: (1,2,3,4,5,6)(7,8,9,10,11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21) has period 30, so in
So1 there is a cyclic subgroup of size 30. However, one can do better: already S11 has a
subgroup isomorphic to Zs.)

3. The center of G is defined as Z(G) £ {g € G : for all z in G, gz = xg}. Show that Z(G)
is always a normal subgroup of G.

4. Let G be a group. Show that the quotient of G by Z(G) is cyclic if and only if G is
Abelian.

5. How many Abelian groups are there with exactly 100 elements?

6. Let m be a squarefree integer, i.e. an integer that is not the multiple of any square of an
integer. (E.g. 10 is square free, 20 is not.) Show that up to isomorphism, there is only
one Abelian group of size m.
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7. For the previous exercise, the Abelian assumption is crucial: Let G be the smallest group
formed by two elements z,y, and subject only to the relations

r'=e=y and  yx = 2%y.
Thus G is not commutative. Show that G has exactly 21 = 3 - 7 elements, namely,

eya’ xya’ .,L,an’ 3339‘17 x4ya7 x5ya7 $69aa for a = 17 27 3.

8. The quaternion group is the 8-element set Q = {e, —e, i, —i,j, —j, k, —k}, with the opera-
tion:

e —e T =1 7 —J k —k
e e —e T —1 7 —J k —k
—e —e e —1 ] 7 -k
1 1T —1 —e e k -k —j J
—1 —1 ) e —e —k k j —j
J 7 —3 -k k -—e e i —i
—j —j j  k -k e —e —i
k k -k 3 —7 =i i —e e
—k -k k —j J i —i e —e

Show that every subgroup of the quaternion group is normal.
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4 C-rings, Fields, Domains, and Polynomials

4.1 Commutative Rings

A commutative ring or C-ring consists of a set A endowed with two operations + and - that
satisfy the following eight axioms:

(RO) (Closure). For all z,y in A, the elements z + y and x - y are both in A.
(R1) (Associativity of +). For all z,y,z in A, x + (y + 2) = (x +y) + 2.
(R2) (Commutativity of +). For all xz,y,z in A, v +y =y + x.

(R3)

R3) (Neutral element of + ). There exists exactly one element z in A such that for all z in A,
T + z = x. From now on we denote such element by “0”.

(R4) (Additive inverses). For all z in A there exists exactly one element y in A such that
x4y = 0. From now on we denote such element by “—z”.

(R5) (Associativity of -). That is, for all z,y,zin A, z- (y-2) = (x - y) - 2.
(R6) (Commutativity of -). That is, for all z,y,zin A, z-y=1y - x.
(R7) (Distributivity) For all x,y,zin A, x - (y+2) = (x - y) + (z - 2).

Notation. We write a —b as a shortening of a+ (—b). Moreover, we usually write zy instead
of z - y. Note also that by associativity, it is not ambiguous to write abcd instead of a(b(cd)) or
of (ab)(cd). In fact, no matter how you insert brackets, the result is always the same.

Remark 207. If (A, +, -) is a C-ring, then (A, +) is an Abelian group. Given any Abelian group
(G,+), by endowing G with the operation - defined by a-b = 0 for all a, b, one obtains a C-ring
(G,+,-). See also Remark 218.

Remark 208. Some textbooks rephrase axiom (R3) as “The operation + has a neutral element”,
and axiom (R4) as “Every element has an additive inverse”. In both cases, uniqueness is implied,
as you already know from (A, +) being a group.

Remark 209. If (A, +, -) is a C-ring, then (A, +) is an Abelian group. Given any Abelian group
(G,+), by endowing G with the operation - defined by a-b = 0 for all a, b, one obtains a C-ring
(G,+,-). See also Remark 218.

Example 210. The empty set is not a commutative ring: In fact, by axiom (R4), any C-ring
must contain at least one element, namely, the neutral element 0.
The set {0}, instead, is a C-ring. So the smallest C-ring has one element.

Example 211. Let m be a positive integer. The set Z,, = {0,1,...,m} is a C-ring, with the
operations of addition and multiplication “modulo m”. So for any positive integer m, there is a
C-ring with exactly m elements.

Example 212. The sets (Z,+, ), (Q,+,-), (R,+,-), (C,+,-), are C-rings with the usual addi-
tion and multiplication. So there are also infinite C-rings.

Now we can see some general properties of C-rings. Since every C-ring is also an Abelian
group with respect to addition, whenever a + b = a + ¢ we can conclude that b = c. (In fact, we
can sum —a to both sides...). The analogous property with respect to multiplication does not
always work. Besides, even in Z you know that 3-0=7-0, but 3 # 7. In fact:
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Proposition 213. Let A be a C-ring. For all a in A, a-0=0.

Proof. Being 0 neutral element, a-0+0=a-0=a-(0+0) =a-0+a-0, where in the last step
we used distributivity. So by Cancellation with respect to sum, 0 = a - 0. 0

Proposition 214. Let A be a C-ring. For all a,b in A, (—a)b = a(—b) = —(ab).

Proof. Since the additive inverse is unique, to check that (—a)b = —(ab) it suffices to prove that
(—a)b is an additive inverse of ab; that is, we need to show that (—a)b+ ab = 0. This can be
done using distributivity: (—a)b+ ab = (—a + a)b = 0b = 0, where in the last step we applied
Proposition 213. Similarly, a(—b) + ab = a(—b+ b) = a - 0 = 0, which shows that also a(—b) is
the additive inverse of ab. O]

Proposition 215. Let A be a C-ring. For all a,b in A, (—a)(—b) = ab.

Proof. Obviously —ab + ab = 0. On the other hand, by Proposition 214, —ab = (—a)b; so
—ab+ (=a)(=b) = (=a)b + (—a)(=b) = (—a)(b+ —b) = (—a)0 = 0.

So both ab and (—a)(—b) are the additive inverse of —ab. Hence, they must be equal. O

4.2 Invertible elements and Fields

In the definition of C-ring, there was no mention of a neutral element for multiplication, let
alone of multiplicative inverses. Nothing prevents us from demanding these things:

Definition 216. A C-ring with 1 is a C-ring that satisfies the additional axiom

(R8) The operation - has a (necessarily unique'’) neutral element for multiplication, different
than the one for addition. In other words, there exists a unique element z # 0 in A such
that for all z in A, zz = x. We denote such z by “1”.

Example 217. Z,Q,R, C are C-ring with 1. For any positive integer m, Z,, is a C-ring with 1.
Instead, the set 2Z of EVEN integers is a C-ring “without 1”.

Remark 218. Follow up to Remark 218: Given any Abelian group (G, +), it always possible
to endow G with an operation - such that (G, +, ) is a C-ring with 17 The answer is negative.
Suppose A is a C-ring with 1 such that in (A, +) every element has finite additive period. Let
k be the additive period of 1. Then for every x in A, by the distributive property

r+x+...+x(ktimes)=x-(14+1+...4+1)=2-0=0,

so the additive period of any element of (A, +) divides k. But in the Abelian group G = Q / 7
every element has finite additive period: the period of %, if gcd(m,n) = 1, is n. However, there

is no integer k such that the period of every element of Q / 7, divides k.

Definition 219 (Invertible). Let A be a C-ring with 1. An element = in A is called invertible
if there exists a (necessarily unique'!) y in A, called a multiplicative inverse, such that zy = 1.

10Were there two distinct neutral elements z and w, we would have zw = z (because w is neutral) yet also
zw = w (being z neutral), so z = w; a contradiction.
"Were there two multiplicative inverses y, ' for z, we would have ¢/ =y’ 1 =y/(zy) = (Yz)y = ly = .
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For example, 1 is always invertible, because 1-1 = 1; 0 is never invertible, because Oy = 0 # 1
for all y in A (cf. Prop. 213). Clearly “invertible” makes sense only in a C-ring with 1.

Notation. From now on we denote the multiplicative inverse of = (whenever it exists!) by
“r=1”  Recall that we decided to write a — b as a shortening for a+ (—b); similarly, some authors
introduce the notation § as a shortening for ab~'. We stress that the notation 7 only makes
sense because of the commutativity axiom (R6): Were the product not commutative, then we

would need to distinguish ab~! from b~'a, so the notation “%” would be ambiguous.
Definition 220. A field is a C-ring with 1 with at least two elements that satisfies the axiom:
(R9) Every element a # 0 of F' is invertible.
Example 221. Q,R, C are fields; Z is not a field. In Z, only 1 and —1 are invertible.
Is Z,,, a field? It turns out that the answer depends on m.
Proposition 222. Z,, is a field <= m is a prime number.

Proof. “<” Let a # 0 in Z,,. Since m is prime, gcd(a,m) = 1. So a is invertible by Prop. 26.
“=” Had m a divisor d with 1 < d < m, then we would have ged(d, m) = d # 1, so by Prop. 26
this d in Z,, is not invertible. ]

Corollary 223. The smallest field is Zs.

4.3 Zerodivisors and Domains

Definition 224. Let A be a C-ring with at least two elements.
e An element a € A is called zero-divisor if there exists some element b # 0 such that ab = 0.
e An clement a of A is called nilpotent if there is a positive integer k such that a* = 0.

Note that by Proposition 213, if a* = 0, then a™ = 0 for all n > k, so we equivalently could
have written “a is called nilpotent if there is a positive integer k such that o = 0 for all n > k”.

Example 225. 0 is nilpotent. It is a zero-divisor because A has at least two elements, so there
is an x # 0 for which 0 -z = 0 by Proposition 213. If A is a C-ring with 1, then 1 is neither
zerodivisor (if z # 0, then 1-x # 0) nor nilpotent (1% =1 # 0 for all positive k).

Proposition 226. Nilpotent = Zerodivisor => Not invertible.
The two converse implications are false.

Proof. Let a be a nilpotent element and let r be the smallest positive integer for which a" = 0.
If » = 1, then @ = 0, which is a zero-divisor. If r > 2, then a"~!' # 0 by definition of r, and
a-a"" ' =a" =0. So either way, a is a zero-divisor. As for the second implication: Let a be a
zerodivisor. Let b # 0 such that ab = 0. Were a invertible, we could multiply by a~! and obtain
b =0, a contradiction. Counterexamples for the converse implications: In Zig, the element 5 is

a zerodivisor (because 2 -5 = 0), but not nilpotent (because 5™ = 5 for all positive integers n);

in Z, any z ¢ {—1,0,1} is not invertible, but not a zero-divisor. O
°0
nilpotents ol
zerodivisors invertible
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Note that a field is a C-ring where the only non-invertible element is zero. Inspired by this
and by Proposition 226 above, we give two new definitions:

Definition 227. A C-ring with 1 is called
e a domain, if the only zero-divisor is zero.
e reduced, if the only nilpotent is zero.

Corollary 228. All fields are domains, and all domains are reduced.

Proof. Straightforward from the definitions and Proposition 226. O

Example 229. Z, and Q are fields. Z is a domain, but not a field. Zg is reduced, not a domain
(cf. also Proposition 231 below). Z4 and {0} are not reduced.

It turns out that domains exactly as those C-rings where one can perform “cancellation with
respect to product”, on the condition that what you cancel by is non-zero.

Proposition 230. Let A be a C-ring with 1. The following are equivalent:

@ A is a domain, i.e. the only zerodivisor is 0.
@ For all a,b in A, if ab= 0, then either a =0 or b = 0.

@ For every a # 0, if ab = ac then b = c.

Proof.
@ = @ By contradiction, suppose there exist a,b in A such that ab = 0, but both a # 0
and b # 0. Then a and b are zerodivisors.
@ = @ If ab = ac, with a # 0, then a(b — ¢) = 0. So by the assumption, either a = 0 or
b—c=0. Buta#0,s0b—c=0.
@ = @ By contradiction, suppose there is a zerodivisor a # 0. So for some b # 0 we have
ab = 0. So by Proposition 213, ab = a - 0, which implies b = 0; a contradiction. O

Recall that by Proposition 222, Z,, is a field if and only if m is prime.

Proposition 231 (Euclid’s Lemma rivisited). Let m > 2.
® Ly, is a domain if and only if m is prime.
® T is reduced if and only if m is a product of (one or more) distinct primes.

Proof. e If m is prime and ab = 0 in Z,,, then m divides ab. By Euclid’s Lemma 13, m
is either a factor of a or of b. In other words, either a = 0 mod m or b = 0 mod m.
Conversely: if m is not prime, then it is a product of two smaller numbers, m = ab. So in
Z.,, we have ab = 0, which means that a and b are zerodivisors.

e Suppose m = pi---pg, wWith p; # p; for all ¢ # j. If n* is a multiple of m, then each p;
divides n*, so by Euclid’s lemma each p; divides n. Hence, n is a multiple of m. So n =0
in Z,,. Conversely, suppose that m = p?z, for some integer z and some prime p. Setting
T d:efpz, we have that 22 = p?2%2 = mz. Thus 2% =0 in Z,,. O

Remark 232. Being a field strictly implies being a domain, Z being the obvious example of a
domain with lots of non-invertible elements. However, every finite domain is a field. To show
this, pick any nonzero element a in a finite domain A, and consider all the powers {a" : n € N}.
Since A is finite, these elements cannot be all distinct, so there exist integers r < s such that
a® = a”. Canceling the factor a”, which is not zero because domains are reduced, we obtain
a®*"=1. Soy 51 satisfies ay = ya = 1. Hence, a is invertible.
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4.4 Polynomials

What is a monomial? What does “z” mean? When are two polynomials equal? In this section,
we will try to answer these simple questions. Let us first recall a notion from calculus.

Definition 233. Let A be an arbitrary set. A sequence in A is a function a : N — A. The
usual convention is to write a; instead of a(i). If 0 is an element of A, we say that a sequence
is eventually zero if there exists an integer M such that a; = 0 for all ¢ > M. A common
convention is to write down eventually zero sequences as finite vectors, by listing the images
ap,a1,...,ap and by forgetting the infinite sequence of zeroes that comes next.

Definition 234 (C-ring of polynomials with coefficient in a C-ring). Let A be a C-ring with
1. The sequences f = (ag,a1,a2,...,0n,dn4+1,-..) in A that are eventually zero are called
polynomials with coefficients in A. The set of all polynomials with coefficients in A is denoted
by Alz]. With the notation above, the set A[x] can be written as

Alz] £ {f = (ag, a1, as, ..., ap) such that n € N and a; € A}.

The original ring A can be thought of as a subset of A[z|, by identifying any element ¢ of A
with the “constant polynomial” (c,0,0,...) of Afz].

Theorem 235. A[z] is a C-ring with 1, when endowed with the following operations:

e (ag,...,apn)+ (bo,...,by) is the sequence co,c1, ... where ¢; i+ bi;
o (ag,...,ap) - (bo,...,by) is the sequence cgy, ¢y, ... where ¢; « Y heo Ok - bick-
The neutral element with respect to the sum is the sequence (0,0,0,......); the neutral element

with respect to the product is the sequence (1,0,0,...).

The proof is left as exercise. In view of the theorem, we adopt the notation 0 = (0,0,...)

def 1)

and 1 = (1,0,0,...). We are now ready to explain who “x” is:
Definition 236. We call = the sequence (0,1,0,......). So for example
2> =x-2=1(0,1,0,0...)-(0,1,0,0...) = (0,0, 1,0).

Similarly,
23 =xz-2%=(0,1,0,0)-(0,0,1,0) = (0,0,0,1).

By induction, z™ is the sequence cg, ¢y, . .., where ¢, = 1 and ¢; = 0 for all ¢ # n.
Remark 237. Note that
(ap,a1) = (ao,0) + (0,a1) =ao- (1,0) +a; - (0,1) =ap-1+ay - =.
Similarly,
(ap, a1, az) = (ap,0,0) + (0,a1,0) + (0,0,a2) = ap - 1 +ay - = + as - 2°.

More generally,

n
(ag,...an) = Zak-xk.
k=0

Notation. We can now write down polynomials the way you are used to. In fact, in view
of the identity above, we will write down the polynomial (ay,...ay) as

2
ao + a1x + asx® + ...+ aa”.
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Definition 238. Let f be a polynomial in A[z]. Say f = ag + a1x +asx? + ...+ ap,z™ with the
notation above. Let b € A. We call evaluation of f at b the element

F(0) = ag + arb + ash® + ... + a,b"
Notationally, you can think of f(b) as the result of “plugging in b for x”.

This way, every polynomial f in A[z] naturally induces a function from A to A; namely, the
function f that sends b to f(b).

Remark 239. With our definition, two polynomials are equal if they have the same coefficients
in the same positions. For example, the two polynomials of Zs[z]

f=x+2 and g=1a+2

are different: the polynomial f corresponds to the sequence (2,1), whereas g corresponds to the
sequence (2,0,0,1). However, the two induced evaluations
f e §:Z zZ
fiZs — Zs and g:Zs — 3
b — b+2 b — b°+2.

are equal as functions, because they yield same outputs if they are given same inputs! In fact,
by Fermat’s Little Theorem (Theorem 130), one has > =b mod 3 for all b € N.

Degree of a polynomial

Definition 240 (Degree). The degree of a nonzero polynomial f is the maximum index k such
that the coefficient of z¥ is not zero. If the degree of f is n, we will often refer to a,z" as the
leading term of f, and to a, as the leading coefficient of f.

Example 241. Every constant polynomial has degree zero, except for the zero polynomial,
which does not have a degree.

Let us see how the degree behaves with respect of sum and product.

Lemma 242. Let A be a C-ring with 1. Let f,g be nonzero polynomials in Alx]. Then
either f +g=0 or deg(f + g) < max{deg f,degg}.
If in addition deg f # degg, then

f+9#0 and deg(f + g) = max{deg f,degg}.

Proof. Write f = (ao,...,a,) with a, # 0, and write g = (b, ..., by) with b,, # 0. Then

n = deg f and m = degg. Now:

e If n < m, then f + g is the polynomial (ag + b, ..., an + by, bnt1,...,by), of degree m.

e If n > m, then f + g is the polynomial (ag + b, .. ., am + b, @i, - - -, ay), of degree n.

e If n = m, then f + g is the polynomial (ag + by, .. ., am + by,). In this case we cannot be sure
that the degree is n, because it could be that a,, = —b,,, so that a,, + b,, = 0 and the degree
is then smaller than m. For this reason, we only claim deg(f + ¢g) < max{deg f,degg}. O

Lemma 243. Let A be a C-ring with 1. Let f,g be non-zero polynomials in Alz]. Then
either f-g=0 or deg(f-g) <degf+degg.
If we know in addition that A is a domain, then

f-9#0 and deg(f-g) =deg f +degg.
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Proof. As in the previous proof, write f = (ay,...,a,) with a, # 0, and write g = (bg, ..., bp)
with b,, # 0. Then
f 9= "(aobo, apbi + aiby, ... , apbm).

If Ais a domain, from a, # 0 and b, # 0 it follows that a,, - b, # 0, whence deg(f-g) = n+m.
If instead A is not a domain, it could be that a, - b,, = 0, in which case the degree is lower, or
it could even be that fg = 0, in which case fg does not have a degree. 0

Example 244. In Z4[z], consider the degree-five polynomial f = 2x° + 1. Then
f-f=420 4425 +1 =02+ 025 +1 = 1.

So deg(f - f) = 0, which is lower than deg f + deg f, and in fact it is even lower than deg f! Of
course, this happened because Z, is not a domain, and inside such C-ring we have 2 -2 = 0.

The proof of the next Lemma is left as exercise:

Lemma 245. Let A be any C-ring with 1. Let f,g be polynomials in Alx]. Suppose that
f # 0 and that the leading coefficient of g is not a zero-divisor. Then fg # 0 and deg(f - g) =
deg f + degg. In particular, deg g < deg(f - g).

Definition 246 (Monic). A polynomial is called monic if its leading coefficient is 1.

Proposition 247. Let A be any C-ring with 1. All monic polynomials of positive degree (in-
cluding z, 2%, 3 etc.) are not invertible. In particular, Alx] is never a field.

Proof. Let g be a monic polynomial of degree d > 0. Let f be an arbitrary polynomial in A[z].
Since 1 is invertible, it is not a zero-divisor ((cf. Prop. 226), so by Lemma 245

deg(fg) = deg f + degg =deg f+d >d > 0.
In particular fg # 1, because 1 has degree zero. O

Theorem 248. Let A be a C-ring with 1. Then
A is a domain <= Alx] is a domain .

Moreover, if A is a domain, then {invertible elements of A[x]} = {invertible elements of A}.

Proof. ‘=-. This is the second part of Lemma 243 above.
‘<’. Note that A C A[z], by viewing the elements of A as degree-zero polynomials of A[z].
Now let a,b be in A. If ab =0 in A, then ab =0 in Ax], so either a = 0 or b = 0.
Last claim, “2”: If ab =1 in A, then since A C A[z], the equality ab = 1 also holds in A[x].
Last claim, “C”: Suppose fg = 1 in A[x]. Since A is a domain, by Lemma 243 we have that
deg f +degg = deg(fg) = deg1 = 0. So deg f = degg = 0, that is, both f,g are in A. O

Non-Example 249. The polynomial f = 22° + 1 of Example 244 satisfies f - f = 1. So
{invertible elements of Z4[x|} 2 {invertible elements of Z4}.
There is no contradiction with Theorem 248 though, because Z4 is not a domain.

Remark 250. One may wonder if the property ‘the invertibles of A[x] and of A are the same”
occurs only if A is a domain. The answer is negative. We will see that in Zg[z] the only invertible
elements are 1 and 5, which are already in Zg. Yet Zg is not a domain.
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4.5 Division of polynomials and cyclicity of U,

We would like to divide a polynomial by another, as we did with integers, with the idea that
the remainder should have lower degree of what we divide by. There is however an immediate
problem: in Z[z], say, how could we possibly divide 22 by 3z? If we try to write

2 =q-(3z) +r, (13)
with degr < 1 = deg(3z). But Z[z] is a domain by Theorem 248, so
2 = deg(x?) = deg(2® — r) = deg(q - 32) = degq + deg(3z) = degq + 1.

So degq = 1. Let’s rewrite ¢ = az + b, with a,b integers. Equation (13) is an identity of
polynomials, which means that the coefficients in the respective degrees should match. Thus
from Equation (13) we get a system of three equations in Z:

1 =3a
0 =3b
0 =

But the first equation is already impossible! So the system has no solution: In Z[z] we cannot
divide 22 by 3x. And we would face a similar problem in Zg[z]. (In Zg[x] we would not know
whether ¢ has degree 1, but in any case, if we write ¢ = ag+ a1z +. . .+ axz®, then the coefficient
of 2 in the expression “q - (3z) + r” would be 3a1; so 22 = ¢ - (3z) + r would imply 1 = 3a;.)
End of story?! Wait. The problem was that in Z we tried to divide by 3z, a polynomial whose
leading coefficient is not invertible in Z. Since in Z we cannot divide all numbers by 3, it makes
sense that in Z[z] we cannot divide all polynomials by 3zx...

Theorem 251. Let A be a C-ring with 1. Let f,g in Alz] be polynomials such that the leading
coefficient of g is invertible. Then, there exist a unique pair (q,r) in Alz] x Alz] such that:

e f=q-g+r;

e cither r =0, or degr < degg.

Proof. EXISTENCE. If deg f < deg g, or if deg f is undefined because f = 0, the claim is obvious:
Set ¢ £ 0, r & f and we are done. So we can assume that deg f > degg. Also, if degg = 0,
then g coincides with its leading coefficient, so it is invertible and the claim is again obvious:
set ¢ « f-g ' and r €. Hence, from now on we can assume that deg f > degg > 1.
We proceed by strong induction on the degree of f. Set n « deg f, m “ deg g and write
f=ay+aiz+ax®+ ...+ apx"”, g=bo+bix+bx®+...+by,z™. Since we know that b, is
invertible, consider
FPEF = an-(bp) 2" g,

This f’ is the difference of two polynomials of same degree and same leading coefficient a,,. So
the leading terms cancel out, and either f* = 0 or deg f’ < m. Either way, by induction, the
theorem holds for the pair (f’,g): Namely, there exist ¢/, in in Afz] such that f' =¢ - g+,
with either ' = 0 or degr’ < degg. But then

f =f+an-(bp) 2" g=(-g+7)+an (bp) 't 2" -g=
= (¢ +an-(by)L-a"™) . g+

def

If weset 7 €0/, ¢ € (¢ +an- (b))~ 2"™), then f = qg+r, with either 7 = 0 or degr’ < degg.
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UNIQUENESS. Suppose that

f =q-g+n with either r; =0 or degr; < degg, and also

' =q@-g+re, with either ro = 0 or degre < degg. (14)

We claim that ¢; = g2. From the claim, it follows immediately that 1y = f —q19 = f — qog = 72,
which is the desired conclusion. Let us prove the claim by contradiction. Suppose g2 — g1 # 0.
From Equations (14) we get q1 - g+ 11 =¢q2- g+ 72, SO

r—re=(q—q)" g
The leading coefficient of g is invertible, so not a zero-divisor (Prop. 226). Hence by Lemma 245

deg(r1 —r2) = deg(qe — q1) +degg > degg.
This contradicts Lemma 242, because each r; is either 0, or of degree smaller than degg. O

So to any pair (f,g) of polynomials, with the leading coefficient of g invertible, there is this
unique other pair (¢, ). But how do we concretely find it? There is an algorithm simply derived
from the previous theorem. Suppose you have to divide f by g, so the input is the pair (f, g).

1. Initialize ¢ & 0.

If the leading term of g is not invertible, return an error message and stop.
If degg = 0, output (f - g~*,0) and stop.
If deg f < degg, or if f =0, output (0, f) and stop.
While deg f > degg > 1:
e divide the leading term of f by the leading term of g. Let m; be the resulting
monomial. Replace ¢ by ¢ +m;. (Computer scientists say: “increment ¢ by m;”).
e Write —mjg under f and sum them: this kills the leading term of f. Replace f by
the lower-degree polynomial f —mig (or “increment f by —mqg”).
6. Output (g, f — q9).

Below is an example of how I graphically compute the division in Q[z] of f = 1223 + 422 —6

by g = 3z — 2.

Tl N

12x° + 42+ 0x - 6 [3x-2
12x3 - 8x2 4 +4x + ¥/,
//+12x% + 0x
12x% - 8x
//+8x - 6
8x - 1%/,
-2,
The remainder I obtain in the end is r = —% (last line to the left); the quotient is ¢ =

42% + 4z + % (last line to the right). Every new iteration of the algorithm produces a new
horizontal bar on the left, and a new monomial (of smaller and smaller degree) composing ¢
on the right. Bottom line: There is only one reason I use this notation — namely, because it is
consistent with the way I was taught to graphically represent long divisions of integers, when I
was in elementary school. Obviously, if you were taught long division of integers in a different
way, you should perhaps adopt a way to keep track of the long division of polynomials that is
consistent with how you divided integers.

The Euclidean division has several spectacular consequences. Let us start with one.

69



Definition 252. Let A be a C-ring with 1. Let f be a nonzero polynomial in A[x]. An element
a of A is called a root of f if f(a) = 0. (That is, if “plugging in a for x we get an expression
that is equal to zero”.)

For example, 3 is a root of 22 — 52 + 6, because 32 —5-3 + 6 = 0.

Theorem 253 (Ruffini). Let A be a C-ring with 1. Let f be a polynomial in Alx]. Then for
any a € A, we can write

f=(@—a)-q+ f(a).
In particular,

a is a root of some polynomial g <= (r — a) divides g.

Proof. The leading coefficient of x — a is 1, so we can apply the Euclidean division to f and
g = x — a: there exist polynomials ¢, r such that

f=@-—a)-q+r
and either r = 0, or degr < deg(z —a) = 1. In both cases, r must be a constant, which remains
unchanged if we plug in £ = a. So let’s plug in x = a: we get
fla)=0-q(a) +r=r

So the remainder of the Euclidean division of f by z — a is exactly f(a). In particular, f(a) =0
if and only if f is a multiple of = — a. O

Theorem 254. Let A be a domain. If ay,...ay, are distinct roots of some nonzero polynomial
f € Alx], then deg f > n and

f=9(@—a)(r—a2) (z—an)
for some nonzero polynomial g € Alx] of degree deg f — n.
Proof. By induction on n. The case n = 1 is given by Ruffini’s theorem 253: if a; is a root of
f, then f = q-(x — ay), with ¢ # 0 (otherwise f = 0). So by Lemma 243 we have deg [ =
degqg+ 1 > 1. Setting g « q we are done. Now suppose we have already proven the theorem

for every nonzero polynomial with n — 1 distinct roots. Let f be a polynomial with n distinct
roots, ai, ..., a,. By Ruffini’s theorem applied to a,, we have

f=q (z—an),
and since we are in a domain, deg f = degq + 1. Now, if we plug in « = a1, which is a root of
f, we get
0=q(ar) - (a1 — an).

But by assumptions a; — a,, # 0 and A is a domain: hence, g(a;) = 0. The same applies also to
a2,0a3,...,0,_1: We get

0= flai) = q(ai) - (a; — an),
which implies g(a;) = 0. In conclusion, ¢ has n — 1 distinct roots. By the inductive assumption,
degg >n —1 and

q=g(x—ar) - (z—an1)
for some g € A[z]. But then deg f =degg+1>(n—1)+1=mn and

f=ale—an) = glz—ar)- (@ — 1)@ — an). =

Non-Example 255. Consider the polynomial 22 —4 in Zq5. It has degree two, but four different
roots: 2,4,8,10. Note that (z — 2)(z — 10) = 22 — 4, but also (z — 4)(z — 8) = 2? — 4.
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Application: Cyclicity of U,

We conclude with an unexpected application to groups. In Theorem 185 we saw that if G is the
product of two cyclic groups with a and b elements, and ged(a, b) # 1, then the period of every
element of G divides s = %b. So the polynomial equation z® = e has more solutions (namely,

ab) than its degree. This connects to our new Theorem 254.
Theorem 256 (Gauss’ theorem). For any p prime, the group (Uy,-) = (Z, — {0}, ) is cyclic.

Proof. U, is Abelian, so by Corollary 205 it is isomorphic to a product of finite cyclic groups
def
G= (Zprlnl X Zp;nz X ... X Zp;nh, —|—) .

We claim that with the notation above, the p;’s are indeed all distinct, so that

p—1=p"py?---p;"
is actually the prime decomposition of p — 1 into powers of different primes. The claim would
immediately imply the conclusion that G' (and thus Up) is cyclic, via Corollary 186. So let us
prove the claim. By contradiction, assume that two p;’s are the same. Without loss of generality,
we can assume p; = po and my < meo. By Theorem 185, any element x of

G: <Zp;n1 XZPTQ X ... sz;lﬂh,‘i‘)

has period dividing ¢ “ :];%11. Since the period is maintained under isomorphisms, then also
1

in (Up,-) every element has period dividing ¢. In other words, the equation 2 =1hasp—1
solutions in U,. So the polynomial z* — 1 in Z,[z] has more roots than its degree, since t < p—1
by definition of t. But p is prime, Z, is a domain, and so is Zy[x] by Theorem 248; so by Theorem
254, no polynomial in Z,[z] has more roots than its degree. A contradiction. O

Corollary 257. Let p be a prime number. In Z,, the product of two non-squares is a square.

Proof. By theorem 256, there exists a (nonzero) element a € Z, such that every nonzero element
b of Z, can be written as b = a®, for some s € N. Clearly, s is even if and only if b is a square.
But if b = a® and ¢ = a® with s,t both odd, their product is bc = a*1?, with s + ¢ even. ]

Non-Example 258. Us = {1,3,5, 7} is not cyclic: it is isomorphic to (Za X Z2,+). The degree-
two polynomial 22 — 1 has four roots in Zg[z], as all invertible elements of Zg have square 1.
Also, in Zg the non-squares 5 and 7 have product 3, which is not a square.

Remark 259. The converse of Gauss’ theorem is false: It is not true that if U, is cyclic, then
m is prime. For example if m = 2p with p prime different than 2, by the Chinese remainder
theorem one has that U, is isomorphic to Us x U,, which is the same as Uj,.

However, since |U,,| = m — 1 implies m prime, one can come up with a converse as follows:
Theorem 260 (Euler—Gauss, Lucas—Lehmer). For any integer m > 2,
m is prime <= some a € Uy, has period m — 1.

Proof. If m is prime, Uy, has m — 1 elements and is cyclic by Gauss’ theorem 256, so there is
an element of period m — 1. Conversely, if m is not prime, then the totient function of m is at
most m — 2, so |U,,| < m — 2 and no element of U, has period m — 1. O
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Deeper thoughts 261. Gauss proved that U, is cyclic if and only if m belongs to one of the
following sets:

o {2,4}

e odd primes and all their powers;

e the double of a power of an odd prime.
Many integers are not covered by these sets, for example the powers of 2 larger than 4, or
composite numbers like 15. Recall that Ug = {1, 3,5, 7} is isomorphic to (Za X Za,+). Exercise
for you: Show that Ujq is also isomorphic to Zo X Zo, while Uys and Uig are both isomorphic to
ZQ X Z4.

Deeper thoughts 262. The multiplicative group of invertible elements in Z, is cyclic, but
our proof leaves no insight on who the generator is. Finding the “primitive root”, that is, the
generator is in general a very difficult problem. Similarly, for U,, (whether m is prime or not)
it is hard to find a set of generators of smallest cardinality. A table of smallest generating sets
of Uy, for m € {2,3,...,128} can be found at the link
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
There is no upper bound on the smallest size of a generating set, because if m is a product
of k different odd primes, then it can be seen via the Chinese Remainder Theorem that U, is
generated by at least m generators.
4.6 Exercises

1. Prove that if A C B are C-rings with 1, then A[z] C Blz].

2. Prove Lemma 245.

3. Prove Theorem 235.

4. Is the converse of Theorem 254 true? Can there be polynomials f of degree one with no
roots? What about degree two or higher?

5. Find a ged of 23 — 2 + 1 and z* in Zy[z]. Call it d(x). Find polynomials a, b such that
d(z) = (z° — z + 1a(z) + z*b(z).
6. Find a ged of 22 + 1 and o3 + 1 in Zs[z]. Then do the same in Zs[z].

7. How many polynomials of degree four in Z3[x] are there?

8. Let A be a C-ring with 1. Let B = Afz] and C' = AJy]. Write down an isomorphism
between Bly| and C[z].

9. Prove the following stronger version of Fermat’s little theorem 130: Let a, m be any integers
such that ged(a, m) = 1. Then m is prime if and only if in Z,,[z],

(x+a)™=2"+a.

Hint: Use an exercise from Chapter 0: If n is any integer > 2, then

n is prime <= for all integers k € {1,...,n — 1}, <Z> is a multiple of n.
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5 Ideals, quotients, and homomorphisms

5.1 Subrings and Ideals

Definition 263. Let A be a C-ring with operations +,-. Let B C A. B is called a subring of
A if B is a C-ring with the same operations of A, restricted to B.

With this definition, it would be very long to verify that a certain set is a subring. It turns
out however that many properties are automatically satisfied. For example, associativity always
holds, because if x(yz) = (zy)z for all z,y, z in A, then in particular x(yz) = (xy)z for all x,y, 2
in B. Similarly for commutativity and distributivity. So essentially, to check if a subset B of A
is a subring, we only need to verify that:
— the operations are internal to B (that is, for each z,y € B, both x + y and x - y are in B);
— the neutral element of the sum 0 is in B;
— for any element x in B, its additive inverse —zx is still in B.

None of these three verifications is superfluous, but there is a way to perform fewer tests:

Proposition 264. A subset B C A is a subring of A if and only if B satisfies the following
conditions:

(SR1) For each x,y € B, the difference x —y is in B;

(SR2) For each x,y € B, the product x -y is in B.

Proof. Let z,y be elements of B. If B is a subring, also —y € B, so z —y = z + (—y) is also in
B. Hence, (SR1) and (SR2) both hold.

Conversely, suppose (SR1) and (SR2) hold. Let x be an element of B. Applying (SR1) to y = =z,
we get that the difference 0 = x — z is in B. So B contains 0. But then if y is any element of B,
applying again (SR1) to 2 = 0 we get that 0 —y is in B too. So B contains all additive inverses.
It remains to show that the sum is internal with respect to B. This is now easy because if x,y
are in B, then we know that —y is in B, so by (SR1) z +y =z — (—y) is also in B. O

Example 265. 27 is a subring of Z, because the difference and the product of two even numbers
is even. Z is a subring of Q, by identifying every z with 7. Analogously, Q is a subring of R and
R is a subring of C.

Non-Example 266. Z, is not a subring of Z, because the operations are different (in Zg one
has 141 = 0). The set of odd integers is not a subring of Z: it it satisfies (SR2) but not (SR1).
(Why?) Finally, consider A = {qv/2 such that ¢ € Q}. This is not a subring of R: it satisfies

(SR1) but not (SR2), as you can see picking z = y = /2.

Ideals

Definition 267. A subset I C A is called an ideal of A if it satisfies the following condition:
(I1) For each x,y € I, the difference x — y is in I;
(I2) For each x € I, for each a € A, the product a -z is in 1.

A comparison with Proposition 264 immediately reveals that all ideals are subrings. In fact,
condition (I1) is identical to (SR1); yet condition (I2) is slightly stronger than (SR2). We want
ax to be in I not only if a € I, but even if a is an element of A outside I.

Example 268. For every C-ring A, both {0} and A itself are ideals of A.

Non-Example 269. Z is a subring of Q, but it is not an ideal of Q. (For example, 3 € Z,
3 €Q, yet 3- 3 ¢ Z). This shows that not every subring is an ideal. Analogously, Q is not an
ideal of R, and R is not an ideal of C.

73



Example 270. Let n € N. Since a multiple of n times any integer yields a multiple of n,
(n) £ {multiples of n}
is an ideal of Z, and not just a subgroup.

Lemma 271. Let A be a C-ring. Let I and J be ideals of A. The intersection I NJ is an ideal;
in fact, it is the largest ideal contained in both I and J.

Proof. Let x,y bein I NJ. Then x,y is in I, which is an ideal; so both z — y and xy are in I.
Analogously for J. So z —y and xy are in I NJ. This shows that INJ is an ideal. Now suppose
H is another ideal such that H C I and H C J. Then H C I NJ. O

Remark 272. While the intersection is always an ideal, the union need not be! For example,
in Z, consider the set W = (2) U (3). It does not contain 5, because 5 is neither a multiple of 2
nor of 3. So 2,3 € W but 2+ 3 ¢ W. Hence, W is not an ideal.

Lemma 273. Let A be a C-ring. Let I and J be ideals of A. The sum

def

I+J={i+j such thatiel,je J}
is an ideal; in fact, it is the smallest ideal containing both I and J.

Proof. Let x = i+ j and 2’ = i’ + j' be elements of I + J, with 4,4’ in I and j,7' in J. The
difference can be written as
v—y=(©i-79)+ (-5,

which is the sum of an element in I and of an element in J. Also, for any a in the C-ring A
ar =a(i+j) = ai+ aj

is the sum of an element of I and an element of J. So both x — y and az are in I + J. Hence
I+ J is an ideal. As for the second claim, choose any ideal H containing I and J. Then for any
1 € I and for any j € J, we have that i, j are in H; so H must contain also their sum ¢+ 5. O

Lemma 274 (“Explosion”). Let A be a C-ring with 1. If an ideal I contains an invertible
element, then I = A. (We’ll say, the ideal I “explodes” to the whole C-ring.)

Proof. If u € I is invertible, then uw-u~! € I by (I2). So 1 € I. But any a € I can be written as
a=a-1. Sosince 1isin I, a-1isin I by (I12). O

Proposition 275. Let A be a C-ring with 1.
Ais a field <= A has only two ideals.

Proof. ‘=’. Let I be an ideal of A different than (0). Pick u # 0 in /. Since A is a field, u is
invertible, so by the Explosion Lemma 274 we have [ = A.
‘«<’. Let g be any nonzero element of A. Consider the set

I, < {ag such that a € A}.

Let us check that this is an ideal. Let a1g,a2g be two elements of I, with a1, a2 in A.
Then the difference a9 — a2g = (a1 — a2)g is still in I, because a; — ag is in A. Similarly,
if a € A, then a - (a19) = (aa1) - g, which is in I, because aa; is in A. So (I1) and (I2)
are satisfied. Since g # 0, the ideal I, is not (0). But by the assumption, A has only two
ideals, which necessarily are (0) and A by Example 268. So I, = A, and in particular,
1 € I,. This means that there exists a € A such that ag = 1. Hence g is invertible. By
the arbitrarity of g, A is a field. O
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5.2 Generators

In the proof of Proposition 275 we saw an ideal formed by all multiples of a single element. We
wish to expand on this idea.

Definition 276. Let A be any C-ring. Let g be an element of A. We denote by (g) the smallest
ideal of A containing g. The ideals of this form are called principal. The element g is called a
generator of (g).

Proposition 277. Let A be a C-ring with 1. Then (g) = {ag such that a € A}.

Proof. Let Ag be the right-hand side. It is easy to see that Ag is an ideal. Moreover, Ag contains
g because we can write g = 1-g, and 1 € A. Finally, let J be any ideal of A containing g; by
(I2) the ideal J must also contain all products ag, with a in A; so J contains Ag. ]

Remark 278. When A is a C-ring without 1, it still makes sense to consider the ideal Ag of all
multiples of g by elements of A; but we can no longer be sure that Ag contains g. For example,
when A is the subring {0, 2,4} of Zg, then 2 = 2-4, so in this case A2 contains 2. Instead when
A = 27, then A2 = {0,4+4,+8,+12,...,}, so in this case A2 does not contain 2. Exercise for
you: If A is a C-ring, and g € A, the smallest ideal of A containing g is {ag+zg9 : a € A,z € Z}.

The generator of a principal ideal is not uniquely determined. For example, even numbers are
generated by 2, but also by —2. However, 2 = (—1)(—2), and —1 is invertible.

Lemma 279. Let A be a domain. For all a,b in A,
() =(b) <= a=0b-u, for some invertible u € A.

Proof. ‘«<’. If a = b- u, then any multiple of a is also a multiple of b, so (a) C (b). On the
other hand, u~! exists, and a - u~! = b; so any multiple of b is also a multiple of a!, which
means (b) C (a). (For this first implication, we did not use that A is a domain.)

‘=". Suppose (a) = (b). Since b € (a), we know that b = a -y, for some y in A.
Symmetrically, since a € (b), we know that a = b -z, for some z in A.
Substituting a - y for b in the latter equation, we obtain a = a - y - z, for some x,y in A.
Now we distinguish two cases. If a = 0, then b = Oy = 0 too; so in this case we can write
a=>b-1, and 1 is invertible. If instead a # 0, since A is a domain we can cancel the factor
a and conclude 1 = yx. So both x and y are invertible. Setting u = x, we are done. ]

Non-Example 280. Let A = {f : R — R continuous}. Please check that A is a C-ring with
1 with respect to point-wise sum and multiplication, and that the invertible elements in A are
the continuous functions that never vanish. Now draw for me the three continuous functions

a:R — R b:R — R c:R — R
—T ifz <0 T ifx <0 -1 ifz <0
rz —< 0 ifo<z<1 r —< 0 ifo<z<1 r =< 2r—1 if0<z<1
r—1 ifx>1 r—1 ifx>1. +1 if z > 1.

All three functions vanish somewhere, so none of them is invertible. It is easy to check that
a = bc and b = ac, so (a) = (b).

Now let v be any continuous function such that a = bu. This u must be a continuous function
that yields —1 on z < 0, and +1 on = > 1. By the Intermediate Value Theorem of Calculus,
this 4 must vanish in some point x € (0,1). So there is no invertible v in A such that a = bu.
With a completely identical reasoning, one shows that there is no invertible v in A such that
b = av. Of course, there is no conflict with Lemma 279, because A is not a domain.
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Inspired by this, we give the following generalizations of Definition 276 and Proposition 277.

Definition 281. Let A be any C-ring. Let n be a positive integer. Let X be a subset of A (not
necessarily finite). By (X) we denote the smallest ideal of A containing X. The set X is called
a set of generators of the ideal (X). An ideal is finitely generated if it can be written in the
form (X), for some finite set X.

Proposition 282. If A is a C-ring with 1, then

linear combinations of the g; | e
= = ;e AL
(915> 9n) { with coefficients in A {a191 + ... + angn such that a; € A}

Proof. Let R be the right-hand side. R is an ideal because the sum of two linear combinations is
still a linear combination, and if we multiply a linear combination of the x; with coefficients in
A by an element of A, we still have a linear combination. That R contains each g; follows from
choosing a; = 1 and a; = 0 for all j # 4; for this the assumption that A contains 1 is crucial.

Finally, any ideal J of A that contains g1, ..., g, must also contain their linear combinations; so
any such J contains the whole of R. O
Remark 283.

e Even if we use round brackets around them, the generators form a set, not a list. Their
order does not matter! Obviously (z1,z2) = (z2,21).
e The same ideal may have different set of generators, of different size. For example,

(4,6) = {4m + 6n such that m,n € Z} = (2),

yet {4,6} is an “inclusion-minimal” set of generators, since (4) C (2) and (6) € (2).
This may be surprising in comparison with linear algebra, where inclusion-minimal sets of
generators all have the same cardinality...

e Remember that generating is teamwork!, so it’s not a property maintained under taking
subsets. For instance: given an ideal I = (g1, 92, ..., gn), many authors like to say that the
gi’s “are generators” for I. Feel free to do so, but remember that Peter and Andrew were
Apostles, the Apostles were twelve, but you wouldn’t say that ‘Peter was twelve’ or that
‘Peter and Andrew were twelve’. Similarly, given I = (4,6) C Z, it would be incorrect to

say that “4 is a generator of I”, because it suggest (4) = (4,6), which is false.

Proposition 284. Let A be a C-ring with 1. If I = (g1,...,9m) and J = (h1,...,hy,), then

I+J: (gl,...,gm,hl,...,hn).

Proof. “C”. Let i + j be a generic element of I + J. By the assumption, we can write
i=a191+ ...+ amgm and j = bihy + ... + byh,, for suitable coefficients ay, b in A. So
the sum i + j is in (g1,.. ., gm, M1, .-+, ).

“O" If x = [a1g91 + ... + amgm] + bih1 + ... + byhy, is the generic element of I + J, then the
part of the sum between brackets is in I, while the remaining part is in J. O

Remark 285. As in Remark 278, one may wonder if Propositions 282 and 284 extend to C-
Rings (with or without 1). The answer is positive: we leave it as exercise to show if A is any
C-ring, and g1, ...,g, € A, then the smallest ideal of A containing g1, ..., gy, is

{a1g1+ ...+ angn+2191+ ...+ 2ngn : a; € A, z; € Z}.

After this “correction” to what (gi,...,9,) means, the formula of Proposition 284 extends
verbatim to all C-Rings.

Remark 286. There is no easy formula for the generators of I NJ. In fact, even if I and J are
finitely generated, I N J need not be.
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5.3 PIDs

Definition 287. A C-ring (with 1) A is called PID (Principal Ideal Domain) if
(PID1) A is a domain, and
(PID2) every ideal of A is principal.

Proposition 288. Z is a PID: All ideals of Z are of the form (n), for some n € N.

Proof. Let I be an ideal of Z. If I = (0), we are done. Otherwise, I contains some a # 0 and its
opposite —a. Let n be the smallest positive integer contained in I. We want to show I = (n).
The inclusion I O (n) follows from (I2), because n is in I. To show I C (n), let us choose = in
I and let us divide it by n. We have z = ¢-n + r, with 0 < r <n. We want to show r = 0. By
contradiction, suppose r > 0. Since gn belongs to I by (I12), also r = z — gn is in I by (I1). So
r is a positive integer in I smaller than n, contradicting how n was chosen. O

Proposition 289. Fvery field is a PID. Also, Z, is PID if and only if m is prime.

Proof. Let A be a field. By Corollary 228 A is a domain. By Proposition 275 A has only two
ideals, (0) and A = (1). Finally, when m is not a prime, Z,, is not a domain. O

Definition 290 (Greatest Common Divisors in C-Rings). Let A be a C-ring with 1. Let a,b
be two elements of A. We say that a is a divisor of b if there exists ¢ in A such that b=a-c. If
a and b are both nonzero, we call greatest common divisor of a and b any element d such that
e d is a divisor of both @ and b, and
e any other divisor of both a and b is a divisor of d as well.

Remark 291. Not every C-ring has greatest common divisors. For example, inside the domain
Z[v=3] £ {u+vv/=3 :u,v € Z}, which is a subring of C, one has 2-2 = (1+1v/—=3)(1—1v/=3).
If we set @ & 4 and b = 2(1 4+ 14/=3), both ¢ £ 2 and d £ (1 + 1y/=3) are common divisors of
a, b, but neither of {c,d} divides the other. So there is no greatest common divisor of a, b.

Theorem 292. In a PID, any two nonzero elements in a PID have a greatest common divisor,
which is unique up to an invertible factor. In fact, if a,b,d are nonzero elements of a PID,

d is a greatest common divisor of (a,b) <= (d) = (a,b).

Proof. Since all ideals of A are principal, there is a g in A such that (¢g) = (a,b). Being a
domain, A contains 1. Writing a = a -1+ b -0, we see that a € (a,b) = (g), so g is a divisor of
a. Similarly, writing b =a-04b- 1, we see that b € (a,b) = (g), so g is a divisor of b. Finally,
writing g = g - 1, we see that g € (g) = (a,b). So g = ax + by for some z,y in A. This implies
that any common divisor of a and b is also a divisor of g. So g is a greatest common divisor
of (a,b). Now, let d be another greatest common divisor of (a,b). By definition, d and g are
divisors of one another. Thus (g) = (d). Lemma 279, g = ud with u invertible. O

Proposition 293. Z[z]| is a domain that is not a PID. In fact, for any prime number p, the
ideal (x,p) is not principal.

Proof. Note first that (x,p) is the set of all polynomials with integer coefficient whose constant
term is a multiple of p. This includes as proper subset the polynomials with all coefficients
multiple of p; so (p) € (x,p) € Z[z]. By contradiction, suppose (z,p) = (f) for some polynomial
f in Zlz]. Since p € (x,p) = (f), we have p = f - g for some polynomial g € Z[x]. Since we
are in a domain, by Lemma 243 0 = degp = deg f + deg g, which implies deg f = 0 = degg.
So f is an integer that divides p. So either f = +1 and (x,p) = (1) = Z[z]| by Lemma 274, a
contradiction; or f = £+p and (p) = (z,p), another contradiction. O
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What about Q[z]|, R[z], Clz], or the Zy[z] with p prime?Are they PID? The answer is
surprisingly beautiful. But before the answer, please read again the proofs why Z is a PID
(Proposition 288) and why Z[x] is not (Proposition 293). You will see where we copied from.

Theorem 294. Let A be a C-ring with 1.
Ais a field <= Alz| is a PID.

Proof. ‘=’. We already know “A domain < A[x] domain” (Theorem 248), so we only have to
show that every ideal of A[z] is principal. Let I be an ideal of A[x]. There are three cases:
e [ contains only the zero polynomial. Then I = (0).
e [ contains polynomials of degree zero. Then any such polynomial is a nonzero element
of the field A, and thus invertible. By the Explosion Lemma 274, I = Afz| = (1).
e [ contains nonzero polynomials, all of positive degree. Let g be a smallest-degree
polynomial inside I. We want to show I = (g). The inclusion I O (g) follows from
(I2), because g is in I. So let us show I C (g). Choose any f in I and divide it by g.
We can!, because the leading coefficient of g is nonzero in a field and thus invertible,
cf. Theorem 251. So we can write

f=q-g+r, with either r =0 or degr < degg.

Since qg belongs to I by (12), also r = f —qg is in I by (I1). Were r # 0, it would be
a polynomial in I of degree smaller than that of g, contradicting how g was chosen.
So r =0 and f is a multiple of g. But this holds for every f in I. So I C (g).

‘«<’. For any a # 0 in A, we claim that

a is invertible <= the ideal (z,a) C Alz]| is principal.

From this claim, the conclusion follows immediately, because if A[x] is a PID, all of its
ideals are principal, and so by (the direction “<” of) the claim above any a # 0 must be
invertible. Let us prove the claim. The direction “=-" is trivial because if a is invertible,
by Lemma 274 (x,a) = (1). So let us prove “«<”. Let f be a polynomial such that
(z,a) = (f). In particular, both a and = are in (f), so there are polynomials g, h such that

a
T
Being in a domain, we can pass to the degrees and apply Lemma 243: we have that

0 =deg f+degg and 1 = deg f + degh. This implies deg f = degg = 0 and degh = 1.
So System 15 can be rephrased as: there exist f, g, hg and hy in A such that

i' (15)

(f
f-
f-

{ @ =19 (16)
x =f- (ho + hlx) = (fh()) + (fhl):(}.

These equations are identities of polynomials: In particular, the coefficients of x must be
equal on both sides of the second equation. So 1 = f - hq, which tells us that 1 € (f). But
(f) = (x,a) by assumption. So we can find polynomials ¢, h’ such that 1 =z -¢ +a- 1.
By evaluating at © = 0, we get 1 = 0-¢’(0) +a-h’(0), which tells us that a is invertible. [J

Corollary 295. Polynomial rings with two or more variables are not PID.

Proof. Let A be any C-ring with 1. Let B = A[z]. Since B(y) = Alz,y] and B is not a field,
by Theorem 294 the C-ring Alz,y| is not a PID. In fact, our proof of Theorem 294 gives us
a beautiful example of a non-principal ideal in A[z,y], namely, the ideal (x,y). Of course, if

C = Alz,y] is not a PID, then in particular it is not a field, and so again by Theorem 294 the
C-ring C[z] = Az, y, 2| is not a PID either. And so on. O
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5.4 Optional reading: Noetherian and Bezout domains

While the property “every ideal is principal” does not pass from A to Alx], we shall prove here
that the weaker property “every ideal is finitely generated” does, and is therefore enjoyed by
all ideals in polynomial rings with many variables. This is a famous theorem proven in 1888 by
Hilbert, who was 26 at the time.

Definition 296. Let A be a C-ring. A is called Noetherian if every ascending chain of ideals
of A eventually stabilizes. That is, if whenever I C 11 C ... C I, C 1,11 C ..., there exist m
such that I,, = I,,, for all n > m.

Example 297. All finite C-rings are Noetherian, as they have finitely many ideals. Also, all
fields are Noetherian, for the same reason (cf. Proposition 275).

Example 298. Z is a Noetherian domain. In Z, we have a strict containment of ideals (m) C (d)
if and only if the natural number d divides the natural number m, and d < m. So every ascending
chain of ideals eventually stops, because any natural number m has only finitely many divisors.
Note that Z has infinite descending chains of ideals: any number has infinitely many multiples.

def

Non-Example 299. The set A = {f : R — R} is a C-ring with 1 (though not a domain) with
respect to pointwise sum and multiplication. Consider the ideals

def

I, ={f :R— R such that f(z) =0 for each = € [n,0) }.

Clearly I, € I,,41, because if f is zero on [n,00), in particular it is zero on [n + 1,00). (The

converse is false: a function that is zero on [n+ 1,00) and 1 on (—oo,n + 1) is in I,,11 but not
in I,,). This ascending chain never stabilizes, so A is not Noetherian. (Also, not a domain.)

Non-Example 300 (Q[z1,...,2Zx]). Q can be viewed as the subring of Q[z]| formed by the
constant polynomials. More generally, Q[z1,...,x,] can be identified with the subring of
Q[z1,. .., Zn+1] formed by the polynomials that do not contain the variable z,41. Consider

Q[z1, .-+, %oo] & U Q[z1,. .., xn).

neN

Check (exercise!) that this is a C-ring with 1 and even a domain, with respect to the usual

sum and product of polynomials. (In fact, if f is in Q[x1,...,zy] and g is in Q[z1, ..., z,], with
m < n, then both f and g are in Q[z1,...,x,].) Since the infinite chain of ideals (0) C (z1) C
(x1,x2) C (21, x2,23) ... never stabilizes, the domain Q[z1, ..., %] is not Noetherian.

Proposition 301. Let A be a C-ring with 1. Then
A is Noetherian <=  FEwvery ideal of A is finitely generated.

Proof. “<” Let Iy C I C ... C I, C I,41 C ... be an ascending chain of ideals. Consider
U< UjeN I;. Because the ideals are nested, we claim that U is an ideal. In fact, if
x,y € U, then = € Ij for some k and y € I}, for some h; so if we set m = max(k, h), both
x and y are in the ideal I,,. So x —y and xy are both in I,,. But I, C U; so x — y
and zy are in U. Since all ideals are finitely generated, there exists ai,...,ar in A such
that U = (aq,...,ax). Since these k elements are in U = UjeN I;, for each i there exists
m; such that a; € Ip,,. If m is the largest of these m;, all of ay,...,a, are in I,,,. But
then U C I,,, because any =z € U is generated by ai,...,a; and therefore is in I,,,. So
ILpy=Ini1=Inio=...=U.
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“=" By contradiction, let I be an ideal that is not finitely generated. Pick g; in I. Since (g1)
is finitely generated and I is not, I « (1) € I. Pick g2 in I outside g;. Again, since
(g1, 92) is finitely generated and I is not, Io « (91,92) € I, so we can pick g3 in I outside

Is, and so on. This creates an infinite ascending chain. O
Corollary 302. If A is a PID, then A is Noetherian.

The converse is obviously false: Z,4 is Noetherian but not even a domain. The next, famous
result shows that many domains are Noetherian, though not PID.

Theorem 303 (Hilbert’s Basis Theorem). Let A be a C-ring with 1.

A is Noetherian <= Alz] is Noetherian.

def

Proof. “<” Let J be any ideal of A. Let I = { g € A[z] such that g(0) € J }, the set of all
the polynomials whose constant term is in J. This [ is an ideal: In fact, if g(0) € J and
h(0) € J, certainly (h — g)(0) = h(0) — ¢g(0) is in J, because J is an ideal; and if g(0) € J
and f is in A[z], then f - ¢(0) = f(0) - ¢(0) is in J, again because J is an ideal. Being
an ideal in a Noetherian ring, by Proposition 301 [ is finitely generated. So there are
polynomials g1, ..., gm such that I = (g1,...,9m). We claim that J is finitely generated
in A by the constant terms g1 (0),..., g, (0). In fact:
e Because each g; is in I, each g;(0) is in J by definition of I. So (g1(0),...,gm(0)) C J.
e Let a € J. The polynomial g & 2 + a has the property that g(0) = a. Hence g € I.
Since I = (g1,.-.,9m), we can find polynomials fi,..., f, in Afz] such that

g=fi-aqn+fo-g2...4 fm - Gm-

Evaluating at © = 0, we obtain

a=g(0) = f1(0) - g1(0) + f2(0) - g2(0) + ... fim(0) - gm(0),

which proves that a € (g1(0),...,9m(0)). So J C (¢1,-..,¢m)-

“=" By contradiction, let I be an ideal of Alx] that is not finitely generated. In particular,
I # (0) and I # (1) = Alz]. Let fop be a minimum-degree polynomial in /. Since [ is
not finitely generated, (fo) € I; so let f1 be a polynomial of smallest degree among those
that are in I but not in (fy). Again, (fo, f1) € I, so we can choose fy of minimal degree
among those that are in I but not in (fo, f1), and so on. By construction, the integers
deg fo, deg f1, deg fo,... form a non-decreasing sequence. Let £, be the leading coefficient
of f,. Consider the following ascending chain of ideals of A:

(4o) C (4o, 41) C (Lo, 41,42) C ...

Since A is Noetherian, the chain eventually stabilizes. So there is an integer N such that
(Lo, 01, ...,¢N) contains also {y41. This means that we can find elements a; € A such that

EN—&-I =ag-lo+ar-l1+...+anln.
Now consider the polynomial
q def ao - (xdeng+1_deng) fo4ar- (xdegfzvﬂ—degfl) fit... 4an- (xdengH—deng) - fN.

The summands above are polynomials of the same degree, namely, deg fy41. The leading
coefficient of g is by construction ag - g + a1 - 1 + . .. + an€y, which equals £x11. So we
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have constructed a polynomial g € (fo, f1,..., fn) with same degree and leading coeffi-
cient of fyi1. Hence, fyi11 — g has lower degree, because the leading terms cancel out.
Since fn41 was chosen of minimal degree among the polynomials that are inside I but
outside (fo, f1,..., fn), it follows that fyi1 — ¢ (which is clearly in I) cannot be outside

(fo, fis -y fn). So fy41 —gisin (fo, f1,..., fNn), g is also in (fo, f1,..., fn), yet their
sum (fn+1—9) + 9= fn+1 is not in (fo, f1,..., fn): A contradiction. O

Remark 304. A quicker way to show “<” will arise from the next section, when we introduce
quotients. In fact, the quotient of any Noetherian C-ring is again Noetherian, and A = Alz] / (z)°

Corollary 305. The domains Z[x], Q[z], R[z]|, Clz]| are all Noetherian. Same for Zlxi, ..., xy),
Q[z1, ..., xn], R[z1,..., 2], and Clzy, ..., x,], regardless of n.

Remark 306. Rings like Clz,y] are Noetherian but not PID. One may wonder if there is a
constant C' > 1 such that all ideals in C[z,y] can be generated with C' (or less) generators.
The answer is no. For example, in C[z,y] one can prove that J, « (a:”, "y, :cy”_l,y")

cannot be defined with n or less generators. (The list above has n + 1 of them.)
Finally, we wish to elaborate on the difference between “Noetherian domains” and “PIDs”.
Definition 307. A C-ring with 1 is called Bezout if every finitely-generated ideal is principal.

Example 308. Our proof of Theorem 294 shows that A is a field if and only if A[z] is Bezout.
So for polynomial rings in one variable, being Bezout is equivalent to being PIDs.

Remark 309. Let A be a C-ring with 1. Obviously,
Aisa PID <= A is a Noetherian Bezout domain.

In fact, “every ideal is principal” can also be said, more verbosely, as “every ideal is finitely-
generated, and every finitely-generated ideal is principal”.

Lemma 310. A C-ring with 1 is Bezout <= the sum of any two principal ideals is principal.

Proof. The “=” direction is obvious: The sum of a principal ideal (g1) and a principal ideal (g2)
is generated by {g1,92}. As for “<”: Let I = (¢1,...,9n). If n =1 then I is principal. If n > 2,
then I = (g1,...,9n—1) + (gn), and by induction on n we conclude that I is principal. O

Theorem 311. Let A be a domain. A is Bezout <= any two nonzero elements a,b of A have
a greatest common divisor that can be written as a multiple of a plus a multiple of b.

Proof. ‘=’: Let I = (a) + (b). By Lemma 310, I is principal, so there is a g such that
(9) = I = (a,b). Both a and b are in (a,b) = (g), and are thus multiples of g. So g is a
common divisor of a,b. Also, g € (¢9) = (a,b),s0 g can be written as a multiple of a plus a
multiple of b; so any common divisor of a and b is a divisor of g.

‘<’": Let I be the sum of two principal ideals (a) and (b). If @ = 0 or b = 0, then [ is clearly
principal. If both a, b are nonzero, by assumption they have a greatest common divisor d
that can be written as d = ax + by, for some z,y in A. Because of this equality, d is in I.
So I D (d). We claim that I C (d). In fact, by definition of I, any element h of I can be
written as af + bg, for some f,g in A; and since a and b are both multiples of d, so is h.
Hence I = (d) is principal. By Lemma 310, A is Bezout. O

The previous theorem explains why the name “Bezout”: basically, Bezout domains are
those to which we can extend Bezout’s theorem. It is possible (though difficult) to see that
the Noetherian property and the Bezout property are logically independent, in the sense that
neither property implies the other.
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5.5 Quotient C-rings

If B is a subring of A, in particular (B, +) is a (normal!) subgroup of the Abelian group (A, +),

so we know how to naturally define on the quotient A / p an addition operation that turns it
into an Abelian group. But can we introduce a second operation, to make it a C-ring? The
answer is no in general (cf. Remark 218 with A = Q and B = Z), but yes if B is an ideal.

Definition 312 (Quotient by an ideal). Let A be a C-ring. Let I be an ideal of A. we can
define a relation ~ on A as follows:

arb<E g —bel.

This is an equivalence relation, because (REL1) a — a is in I, (REL2) if a — b isin I so is b — a,
and (REL3) if a — b and b — c are in I, so is their sum a — ¢. Hence, we can form the quotient of
A by ~;: to make the notation lighter, we denote it by A/I, omitting the tilde. By definition,

two elements a,b of A are equal in the quotient A/I (i.e. @ =1b) if and only if a—b € I.

Theorem 313. The quotient A/I is a C-ring when equipped with the following operations:

asbh = a+b, and
aob £ a-b
Moreover, if A is a C-ring with 1, so is A/[.

Proof. Are the operations well-defined? So we assume that @ = @’ and b = ¥/, and we have to
check that a +b=a'+ bV and a-b=da - V. By our assumption, a —a’ isin [ and b— b € I. So

(a+b)—(d+b)=(a—d)+(b-V)

is the sum of two elements in I, so it is also in I. This already shows that a+b = o' + ¥'.
Verifying a - b = a’ - V' is a bit more complicated. The trick is to write

(@-b)—(a-V)y=(a-b)—(a"-b)+(d b)—(d - V)=(a—d)-b+d - b-V)el+I=1.

Now that we know the operations ¢ and ® make sense, we have eight axioms to check
(RO) Closure: Since a +b and a - b are both in A, a + b and a - b are elements of /I

def def

(R1) Associativity of ®: a® (b®c) =a®b+c=a+(b+c)=(a+b)+c)=a+bdec=
(@a®b)de.

(R2) Commutativity of &: a®bZa+b=b+a=bda.

(R3) Neutral element of @&: it’s 0, because for all a one has a® 0= a +0 = a.

(R4) Additive inverses: The one for E is —a, because a® —a = a 4 (—a) = 0.

(R5) Associativity of ®: @ ® (b@c) Laob- cd—ef “(b-c)=(a-b)-c)=a-boe=(@a®b) OC.
(R6)

(R7)

R2

R6) Commutativity of ®: @ ® b e b=b-a=boa.

R7) Distributivity: a® (b@¢) £a o b+
(@ob)®(@aod).

Finally, if A is a C-ring with 1, then A / T has 1 as neutral element, because a® 1

H%

a-(b+c)=(a-b)+(a-¢c)=(a-b)®(a-c) =

1%

Example 314. Let A =7 and I = (2). We can form the equivalence relation

a~b<EL a—be(2).

In fact, we have already seen this equivalence relation in Example 38: This is congruence mod
2, and the quotient ring 4 / (2) is what we called “the C-ring Zs”.
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5.6 Ring homomorphisms

Definition 315. Let A, B be two C-rings. A function ¢ : A — B is called a ring homomorphism
if for each z,y in A, it satisfies:

(RH1) ¢(z +y) = ¢(z) + »(y);

(RH2) ¢(z - y) = () - ©(y)-

Definition 316. A bijective ring homomorphism is called an (ring) isomorphism. We say that
two C-rings A and B are isomorphic (as rings), and we write A = B, if there exists a ring
isomorphism from A to B. (This does not mean that all homomorphism from A to B are
bijective; for example, the zero map won'’t be, unless B = A = (0).)

Examples of ring homomorphisms

Example 317 (Inclusion). Let B be a subring of A. Then the inclusion ¢ : B — A, mapping any
b in B to itself, is a ring homomorphism. It is injective, but unless B = A, it is not surjective.
Note: only in case B = A this is called the “identity map”! Remember that two maps are the
same if domain and codomain are the same, and same inputs are mapped to same outputs.

Example 318 (Remainder of division by m). Let m > 2 be an integer. The map ¢, : Z — Zy,
that maps any integer to the remainder of its division by m is a surjective ring homomorphism.
It is not injective: any two multiples of m are mapped to 0.

Example 319 (Projection). Let A be a C-ring and let I be any ideal of A. The projection

T A— A/I
a+— a.

is a ring homomorphism, because of the very way we defined the two operations @& and ® on the
quotient set. It is surjective, but unless I = (0), it is not injective: In fact, any two elements of
I are mapped to 0.

Example 320 (Zero map). Let A, B be arbitrary C-rings. Then the zero map 0: B — A is
a ring homomorphism, called the zero map or sometimes the trivial homomorphism. Unless
B =0, it is not injective; and unless A = 0, it is not surjective either.

Example 321 (Polynomial Evaluation). Let a be any element of a C-ring A with 1. The
evaluation homomorphism from A[z] to A is the map that plugs in £ = a in any polynomial
of Alz]. Formally, it is the map ¢, : A[z] — A that maps f — f(a). For example, if a = 4
and A = Z, ¢4 : Z[x] — 7Z is the map that “plugs in z = 4”. So ¢4 ((z —1)(x +2)(z — 3)) =
@4(x® — 202 — 52+ 6) = 64 — 32 — 20 + 6 = 18. It is a ring homomorphism because it doesn’t
matter whether we first sum/multiply two polynomials and then plug in = 4, or whether we
first plug in and then sum/multiply. In fact, @4(z — 1) - pa(z +2) + pa(x —3) =3-6-1=18.

The evaluation is surjective, because for any ¢ € A, if we view ¢ as a constant polynomial
¢ € Alz], then ¢,(c) = c. Plugging in z = a does not change anything, if the polynomial does
not contain any x! However, the evaluation is not injective. For example, p,(z—a) = 0 = ¢,(0).

Example 322 (Multiplication by idempotent). Given any C-ring A, let r be an element such
that r2 = r. (As a concrete example, you may choose as A the C-ring formed by the 2 x 2

diagonal matrices with entries in R, and r “ ( 8 (1) )) Then the multiplication by r,

r: A — A
a — ra,
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is an injective ring homomorphism: one has in fact p,(a)+p-(b) = ra+rb = r(a+b) = p,(a+b)

!
and p,-(a)p-(b) = rarb = r2ab = rab = u,(ab), where you see the importance of assuming r? = r.

Non-Example 323 (Multiplication). Any ring homomorphism is also a group homomorphism,
if we “forget about the - operation”. The converse is false. For example, let f : Z — 27 be
the map defined by f(z) = 2z. This map is both injective and surjective, but it is not a ring
homomorphism! It is true that f(a 4+ b) = f(a) + f(b), but f(ab) # f(a)f(b). In fact, it is easy
to see that a C-ring with 1 cannot be isomorphic as ring to a C-ring without 1. So (Z,+) and
(2Z,+) are isomorphic as groups, but not as rings.

Finally, here’s a very important ring homomorphism from C[z] to C[z], whose restriction to
RJx] is the identity:

Definition 324 (Complex conjugate). The conjugate of a complex number z = a + ia’, with
a,a’ €R,isz o —ia’. More generally, the conjugate of a polynomial

f=z+znx+...4 22" € Clz]

is the polynomial _
f 4Tt + " € Clx].

Lemma 325. Let f € Clz].
O F=1
(2) F=f if and only if f € Rlz];
3) frg=7+3;
@ F9=73
(5) f-T e R[z].
Proof. The first two items are obvious. Item (5) follows from the (2) and (4), since
fF=FF=Ff=fF

Thus it suffices to prove items (3) and (4). Set f = 37, (a; + iaf)a!, g = > (b + ib)at,

where the a;, a;-, bj, b;- are real numbers. Then it is easy to check that

f+g= Z(cj — ic;-)a:j =f+79, where ¢; = a; + b; and ¢; = aj + b]; for all j.
J
This proves item (3). As for item (4), first we compute

J J
Frg=> (dj—id))a?,  whered; = (agbj_k—aibj ), dj = apbj_p+agbi_y for all j.

J k=0 k=0

On the other hand, f - g = Zj zjzd, where

2 o= i _o(ar —id}) - (bj_y — ivl_,) = S (abj_k, — apb_) —ilalbj—r + arbl_,) =
def

= Yhoolarbjr — aib_y) = i3] glarbj-k — aybj_y) = dj —idj. O
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Theorem 326 (Complex Conjugate root theorem). Let f € Clz]. If a € C is the root of f,
then @ is a root of f. In particular, if f € R[x], then « is a root of f if and only if & is.

Proof. Suppose f = z9+ z1z + ...+ z,2™. Since « is a root,
0=2z20+ 210+ ...+ z,a".

So if we pass to the conjugate and repeatedly apply Lemma 325, we get that

O=ztziat+.. . tzpa"=Z+z1-Q+...+ 7, -a" = f(a).

But 0 is real, so 0 = 0. This shows that @ is a root of f. In the particular case where f € R[],
we have f = f: soif a is a root of f, then @ is a root of f as well. Applying this to @&, we obtain
that if @ is a root of f, then @ (or in other words, «) is a root of f as well. O

Example 327. Since 1+ is a root of 22 — 2z + 2 € R[z], then also 1 — i must be.

Properties of ring homomorphisms
Remark 328. Let k£ be a positive integer. If ¢ is any ring homomorphism, then by induction
olkx)=px+z+ ...2) =p(x)+p@)+ ... + p(x) = kp(x), and

@™ =p@-z-...2) =) o) ... o) =), forall z.
Lemma 329. The composition of a ring homomorphism ¢ : A — B and a ring homomorphism

¥ : B — C is a ring homomorphism from A to C, denoted by 1 o .
Moreover, the inverse of any ring isomorphism is again a Ting isomorphism.

Proof. Let x,y be elements of A.
Yop(@+y) Z v (p() + ¢(y) = () +ble(y) = o p(x) + o p(y).

Similarly for the product. As for the final claim, suppose ¢ : A — B is a bijective homomor-
phism. Consider ¢! : B — A. For any b,V in B,

e D)+ V) = (') + o (¢ (V) = b+,
so applying ¢! to both sides, we get ¢ 1(b) + ¢ 1(¥) = o~ L(b+ V). Similarly,
P (71 B) - @MW) = 0 (B) T (V) = b,
S0 1) o () = 9 (b- 1), .

Proposition 330. For any ring homomorphism ¢ : A — B, we have:
e p(04) =0p, though not necessarily p(14) = 1p.
o For any x,y in A, p(—z) = —¢(x) and p(z —y) = () — (y).
o If A, B are C-rings with 1, if o(14) = 1p, and if x € A is invertible, then p(x) is also
invertible and o(z)~! = p(z~1).

Proof. For any x € A we have p(z) = p(z+0) = p(z)+¢(0), so by cancellation 0 = ¢(0). Even
if A and B are both C-rings with 1, there is no guarantee that ¢(14) = 1p; in fact, in Example
320 we described a ring homomorphism that sends 14 to Op, and in Example 322 another ring
homomorphism that sends 14 to some 7 such that r?> = 1. This settles the first item. Now
for any = € A, p(—z) + p(z) = p(—z + x) = ¢(0) = 0; so p(—z) = —p(z). In particular
oz —1y) E o+ (—y)) = o@)+ (—o(y) = p() —@(y). As for the third item: Under the three
conditions mentioned, for any x we have p(x~1) - p(x) = p(z71 - x) = ¢(1). Since (1) = 1 by
assumption, we conclude. ]
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Definition 331. Let ¢ : A — B be a ring homomorphism. The kernel of ¢ is the set ker ¢ «
{a € A such that ¢(a) = 0}, or in other words, the pre-image of 0. The image of ¢ is the set

Im ¢ £ {¢(a) such that a € A}.

Proposition 332. With the notation above, ker ¢ is an ideal of A and Im ¢ is a subring of B,
though not necessarily an ideal.

Proof. If p(z) and ¢(y) are elements of Im ¢, then ¢(z) — ¢(y) and p(x) - ¢(y) are also elements
of Im ¢, because () —p(y) = p(z—y) and p(x) - p(y) = ¢(z-y). So Im ¢ is a subring of B via
Proposition 264. The image is not always an ideal of B: for a counterexample, take any subring
B C A that is not an ideal (like Z C Q) and look at the inclusion map ¢ : B — A. Similarly, let
x,y be in ker ¢, and let a € A. By Proposition 330 ¢(z —y) = ¢(x) — ¢(y) = 0—0 = 0 and
wla-x)=p(a) p(z) =p(a) -0=0. So both z —y and a - z are in ker ¢. O

Corollary 333. {ideals} ={kernels of C-ring homomorphisms}.

Proof. We already know that the kernel of any ring homomorphism is an ideal. Conversely, any
ideal I of some C-ring A is the kernel of the ring homomorphism 7 : A — A / I O

Obviosuly ¢ : A — B is surjective if and only if Im ¢ = B. Here is a criterion for injectivity:
Proposition 334. A ring homomorphism ¢ : A — B is injective if and only if ker ¢ = {0}.

Proof. ‘=’: Since ¢ is a ring homomorphism, by Proposition 330 ¢(0) = {0}, so ker ¢ D {0}. If
¢ is injective, there cannot be another element x # 0 such that ¢(x) = 0, so ker ¢ = {0}.

‘<" Suppose p(z) = ¢(y). Then p(z —y) = p(z) — ¢(y) = 0, so x — y belongs to ker . But if
ker ¢ = {0}, this means that z —y = 0. So = = y. O

First Isomorphism theorem.

Theorem 335 (First Isomorphism Theorem, Noether 1927). For any ring homomorphism f :
A — B, there exists a (unique) ring homomorphism

A
9" /xerf = B

such that (1) g is injective, (2) Img =Im f, and (3) f = gom, wheremw : A — A/kerf is the
projection that sends any x in A to its class of equivalence T.
Thus, if there is a surjective ring homomorphism f : A — B, then B is isomorphic to A/kerf‘

Proof. Let us force property (3) by defining g(a) Er (a) for all a.

Is this a good definition? If a,a’ are distinct elements of A such that @ = d/, is it true that
f(a) = f(a’)? By definition of quotient, a’ = @ if and only if a’ — a € ker f; if and only if
0p = f(a’ —a). Adding f(a) to both sides, this is the same as saying, f(a) = f(a' — a) + f(a);
but the right-hand side equals f(a’ — a + a), which is f(a’). So, summing up,

d=ain A/kerf = fla) = f(a') <= g(@) = g(d).

The left-to-right implications tell us that g is a well-defined function; the converse implications,
from right to left, tell us that g is injective. It remains to see that Img = Im f. Let b € B:

beImg <= Ja € A such that g(@) = b <<= Ja € A such that f(a) =b <= b € Im f.

This proves the first part. In the particular case where f is surjective, the ring homomorphism
g we obtained is not only injective but also surjective, since Im ¢ = Im f; and so in this case the
g we constructed is an isomorphism. O
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Example 336. For any C-ring A,
A ~
To see this, apply Theorem 335 to the identity map id : A — A.

Example 337 (Remainder of division by m). Let m > 2 be an integer. In Example 318 we saw
that the function “remainder of the division of by m”, is a surjective ring homomorphism from
Z t0 Zy,. ts kernel is (m). Hence, by Theorem 335, Z/<m) is isomorphic as ring to Z,.

Remark 338. This allows us to understand better all DIVISIBILITY CRITERIA. For example,
consider the criterion of divisibility by 11. If the digits of a positive integer z are ax, ag_1,-- ., a0
(in this order), we can write z as

z:ao—l—al-lOl—i—...—l—ak_l-10k_1+ak-10k.

Now, let us project to Zi;. The key observation is that 10 = —1. Then z is divisible by 11 if
and only if 7 = 0. But

Z =agp+ap- 101+ ... +ap_q- 10k +qp - 10~ =
—ag4ar-10+...+ap_1 101 +a; - 10F =
=ag+ar- (10) + ... + @ - (10" ! + @ - (10)F =
=ay+ar-(—1)+az- (—1)2...+a@_1 (D) tta,- (-0)F =
=aq—ai+a— ...+ a1 (- 4 (-1)k =
=ap—a;+az— ...+ (=1)Flag_1 + (—1)kay.

In particular Z = 0 if and only if the alternating sum of the digits of z is a multiple of 11.

Proposition 339 (Complex numbers as quotient). ]R[:c]/( ) =~ C.

22 +1
Proof. Let us consider the function

p: Rlz] - C
f = f(9).

This map is a ring homomorphism: In fact, it is the restriction to R[z] of the “polynomial
evaluation at ¢”, which is the map from C[z] to C defined in Example 321. The map ¢ is also
surjective, because the generic element z = a + b- ¢ of C is the image under ¢ of the polynomial
a+b-x. By the first isomorphism theorem 335),

Rja] /ker ® =C.

At this point we are almost done: All we need to prove is ker p = (2% + 1),
e kerp O (2% +1), because if f = g(x? + 1) for some polynomial g in R[z], when we plug in
i for x we get f(i) = g(i) - (i + 1) = 0. So ¢(f) = 0.
e kerp C (22 +1): Suppose o(f) = 0 for some polynomial f € R[z]. This means that
f(i) =0, so i is a root of f. By Theorem 326, also —i is a root of f. By Theorem 254,
which is applicable because C|z] is a domain, there exists a polynomial g in C[x] such that

f=g-(+i) (x—i)=g (@ +1). (17)
If we apply conjugation to the three sides of Equation (17), using Lemma 325 we get:
f=9-(@—i) (z+i)=7g- (2> +1). (18)

Putting together Equations (17) and (18), and using that C[z] is a domain, we conclude
g =g. By Lemma 325, this means that g € R[z]. So f is in the ideal (22 + 1) of R[z]. [
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def

Proposition 340 (Gaussian integers). If Z[i] = {a + b-i with a,b € Z}, then

Zlz] ) =z,

(22 +1
Proof. Analogous to the previous one and left as exercise. Note that this Z[i] is a domain but

not a field, because the elements of the form z + 0i, with z # 41, are not invertible. (If we can
write 1 = (a + bi)z with a,b in Z, then b =0 and 1 = az.) O

Proposition 341. Let A be a C-ring with 1. Fiz any a € A. Then
Alx ~
| ]/(CL‘ —a) ~ A.

Proof. The tactic is to find a surjective ring homomorphism ¢ : A[z] — A such that keryp =
(x — a), from which we conclude via First Isomorphism Theorem 335. The natural choice is
wo: Alx] - A
f= fla),

the evaluation at a (or in plain words, ‘the map that plugs in a for z’). It is surjective because
any b € A can be viewed as a constant polynomial in A[z|, and because plugging in a for = has
no effect on polynomials that did not contain any x in the first place, obviously ¢,(b) = b. So
all we need to show is that ker ¢, = (z — a).

e kerp, O (z — a), because if g = h - (z — a), when we plug in z = a we get g(a) = 0.

o kerp, C (z —a): Let g € kery,. This means g(a) = 0. But by Ruffini’s theorem

(Thm. 253), if g(a) = 0 then g is a multiple of z — a. O

In particular, any C-ring A with 1 can be viewed as a subring of A[z] (namely, the subring
of A[z] formed by the degree-zero polynomials), but also as a quotient of A[z] by the ideal (x).

Proposition 342. Let A be o C-ring with 1. Fixz any a,b € A. Then

Ay = 0y

Proof. Exercise. Hint: consider the composition of the map ¢, : A[x] — A that we saw in the
proof of the previous proposition, with the projection of A to the quotient A / (b)- O

Corollary 343. Let C be any C-ring with 1. Let cq,co,...,cy be elements of C. Then

Clx1,...,x &~
[ ’ ’ n]/(xl—01,332—02;-”755'71_671) =0

def

Proof. Applying Proposition 342 to A = C|xa, ..., z,], we get
C’[:cl,...,xn]/( ~ C[ajg,...,a:n]/

X1 —Cl, T2 — €2y Ty — Cp) (xa —cCoyevoyy —Cp)

def

And then we keep going: we now apply Proposition 342 to A = C|xs, ..., z,], and so on. O

Proposition 344. Let A be a C-ring with 1. Let I, J be ideals of A. Then

Ty, = J/(ImJ)'

Proof. We leave it as exercise to show that I is an ideal of I + J. Now consider the map
j =  0+7.

This v is a homomorphism. It is surjective, because inside I+J / jone hasi+j =0+
Moreover, kertp ={j e J : 0+j=0}={jeJ : jel}=InJ. O
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5.7 Maximal ideals

Definition 345. Let A be a C-ring. An ideal M C A is called maximal if it satisfies the
following properties:

(M1): M is proper, that is, M # A.

(M2): For any ideal J of A, if M C J then J = A.

In other words, no other proper ideal of A contains M. This explains the name “maximal”.

Non-Example 346. In Z, (0) and (9) are not maximal, since (0) C (9) € (3) € Z. Instead, in

=

Q (0) is maximal and 9 is not, because Q has only two ideals, (0) and Q (Proposition 275).
Theorem 347. Let A be any C-ring with 1. Let I be any ideal of A. Then

I is maximal <= A / 7 is a field.

Proof. “<” Clearly [ is proper, because if I = A, then A/I = (0), which is not a field. Suppose
that I C J for some ideal J. We want to show that J = A. By the Explosiorl Lemma 274,
it suffices to prove 1 € J. Choose any element b € J that is not in I. Then b # 0 in A / I
Since the latter is a field, b is invertible. This means that there is an a € A such that
aob=1imn4/.
By definition of quotient, this means that ab — 1 € I. So we can write

l=a-b+ 1, for some i € I.

Butae J,soabe J;and I C J,soalsoi€ J. SoleJ.

“=" Let @ # 0 in A/I‘ Then a ¢ I. Consider the ideal J = I + (a). This is certainly larger
than I, because it contains a. Since I is maximal, J = A. In particular, 1 € J = I + (a),
so there exists elements i € I and b € A such that

l=i+a-0
But then in A/I we get 1 =04 @ ® b, so @ is invertible in A/I. O
Corollary 348. Let m € N. An ideal (m) is mazimal in Z if and only if m is prime.

Proof. The quotient of Z by the ideal (m) is isomorphic to Z,,. O

Corollary 349. Let F' be a field. The ideals (x + a), with a € F, are mazimal in Fx]. More
generally, if c1,...,cp, € F, the ideal (x1—c1, xa—cC2, ... , Tn—Cp) is mazimal in Flxi, ..., z,).

Proof. By Proposition 341, the quotient of F[x] by the ideal (xz + a) is isomorphic to F'. The
second part is similar, cf. Corollary 343. O

Caveat: Not necessarily all maximal ideals of F[z] are of this form; this depends on F.

Corollary 350. In R[x], the ideals of the form (z*+ bz + c), with b, c € R, are mazimal if and
only if b*> — 4c < 0.

Proof. Exercise. Hint: when b? — 4¢ < 0, try to mimic the proof of Proposition 339, using the

. . . _}H2 . . . .
function “evaluation at x = —% + 74/ % ” instead of the function “evaluation at x =3”. O

Deeper thoughts 351. A very important result in algebraic geometry is Hilbert’s Nullstellen-
satz, which characterizes the maximal ideals of C[zy,...,z,]. What it says is, they are exactly
all ideals of the form (z1 — ¢1,29 — co, ..., @y — ¢,), for some ¢y, ..., ¢, in C.

89



5.8 Prime ideals

Definition 352. Let A be a C-ring. An ideal P C A is called prime if it satisfies the following
properties:

(P1): P is proper, that is, P # A.

(P2): If a- b € P, then either a € P or b € P.

Note that (P2) is the converse of (12), the second property in the definition of “ideal”. Hence,
(P2) could be equivalently replaced by “a - b is in P if and only if at least one of a, b is in P”.
The next Proposition explains why we call them “prime” ideals.

Proposition 353. (n) is a prime ideal of 7 <= either n =0 or n is a prime number.

Proof. Up to replacing n by —n, we can assume n > 0.
“=" Prime ideals are proper, so n # 1. By contradiction, if n > 1 is not prime, then n = ab
with a,b smaller than n. So a ¢ (n), b ¢ (n), yet ab =n € (n), contradicting ‘(n) prime’.
“<” Since n # 1, the ideal (n) is proper. Suppose ab € (n). If n = 0, this means ab = 0, so
either = 0 or b = 0. So (0) is a prime ideal. If instead n is a prime number dividing ab,
Euclid’s Lemma 13 tells us that n divides either a or b. In other words, either a € (n) or
b € (n). So also in this case the ideal (n) is prime. O

Theorem 354. Let A be any C-ring with 1. Let I be any ideal of A. Then
I is prime <= A / 7 is a domain.

Proof. “<” Clearly I is proper, otherwise A / 7 = (0) would not be a domain. Let a,b € A
with ab € I. Then ab =0 in A/I. Since A/I is a domain, either @ =0 or b = 0.

“=” Suppose @ b = 0 in A/I. Then ab € I. Since [ is prime, either a € I (which implies

a=0) or b € I (which implies b = 0). O

Corollary 355. In any domain D, the ideal (0) is prime.
Proof. Since D / (0) = D is a domain, by Theorem 354 the ideal (0) is prime. O
Corollary 356. Any maximal ideal is prime.
Proof. Let I be an ideal of a C-ring A with 1. By Theorems 354 & 347 and Corollary 228,

I maximal <= A / I field = A / 7 domain <= [ prime. O
Proposition 357. In a PID, any non-zero prime ideal is maximal.
Proof. Let I = (i) with i # 0. Let J = (j) be any ideal such that I C J. Since i € (i) C (j),

i =7 -a for some a € A. (19)

Since j-a =i is in I, and I is prime, either j belongs to I (which is impossible!, we wanted
I C J) or a belongs to I. So a has to be in I = (i), and thus

a="b-1i for some b € A. (20)

Putting together Equations 19 and 20, we get i = j - b- 4. Since A is a domain, canceling the ¢
we obtain 1 = j - b. So j is invertible and J = A by the Explosion Lemma 274. O
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Remark 358. In arbitrary domains, not every prime ideal is maximal. For example, consider
the ideal () in Z[x]. By Proposition 341, we know that

Z[x] /

1

7

)

(z)

which is a domain but not a field. By Theorems 354 & 347, it follows that (z) is prime but not
maximal. Indeed, for any prime number p, Proposition 342 tells that

Z[x]/

12

(z,p) = 2o

which is a field. So (z) € (z,p) € Z, with (x, p) maximal by Theorem 347. Conversely, let J be
any maximal ideal of Z[z] containing (z). Clearly J must contain some positive integers, or else
J C (z), but we already know that (z) is not maximal. Let s be the smallest positive integer
in J. We claim that J = (z,s). In fact, if f is any polynomial in J, dividing it by = (which is
in J) we have that f = qz + r, with r a constant necessarily in J. Dividing r by s, we get a
remainder ' < s also in J. So 7’ = 0, or else a positive r’ < s in J would contradicts how s was
chosen. Hence f = qx + zs for some z € Z. So f € (x,s). The claim J = (z, s) is thus proven.
But then Proposition 342 tells that

ey, =2y, =L,

and since this is supposed to be a field by Theorem 347, the number s must be a prime.

Optional reading: Localization and field of fractions

Definition 359. Let A be a C-ring with 1. A subset S C A is called a multiplicative system if
0¢5S,1€.S,and S is closed with respect to products (i.e. st € S for all s,t € 5).

Proposition 360. Let A be a C-ring with 1.
e The complement of any prime ideal in A is a multiplicative system.
o The complement of any inclusion-maximal multiplicative system, is a prime ideal.

Proof. The first part is straightforward: if P is prime, then 0 ¢ P, 1 € P, and ab € P implies
a € Por b e P. Translating this information to the complement C' of P, we see that C is a
multiplicative system.
As for the second part: Let S be a multiplicative system in A such that if S C T C A, then T is
not a multiplicative system. Let P be the complement of S. Clearly 0 € P and 1 ¢ P,so P ¢ A.
Clearly if ab is in P, either a or b must be in P. We want to show that P is an ideal. Let a,b € P.
Consider T, & {s-a" : s € SneN}. This T, is closed with respect to products; moreover,
T, contains S (by choosing n = 0) and a (by choosing s = 14, n = 1ly). By our maximality
assumption, T, cannot be a multiplicative system, so it must contain 0. Hence, there exist
Sa € S, ns € N for which s, - a™ = 0. Analogously, if we define T & {s-0" : s€ SneN}
we obtain that there exist s, € S, ng € N for which s; - b™ = 0. So if we choose an integer N
sufficiently large (larger than n, + n;, say),
e by Newton’s formula we obtain s, - sp - (@ + b)N =0.
Since 5,5, belongs to S, and 0 does not, (a+b)"¥ cannot belong to S. So (a+ b)Y belongs
to P. But then writing (a4 b)Y = (a +b)V~!(a +b), one of the two factors must be in P;
iterating this argument, we see that (a + b) must be in P.
e Similarly, we have s, - s - (ab)’¥ = 0.
Since 548, belongs to S, and 0 does not, (ab)" cannot belong to S. So (ab)" belongs to
P, which implies that ab is in P.
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O]

Example 361. When A is a domain, the ideal (0) is prime, so A* = A\ {0} is a multiplicative
system.

Theorem 362. Let A be a domain. Let S be any multiplicative system in A (for example, the
complement of a prime ideal). Define
ng:ef{% :aeA,seS} and Agd:efxg/w

. . . / def
where ~ is the equivalence relation § ~ & <= as' = a's.

Then Ag is a C-ring with 1 that contains A, via the natural identification of any element a in
A with § in Ag. Moreover, inside Ag the class of every element s of S is invertible, the inverse

being %

Sketch of proof. The idea is to define operations “like in Q”, that is,

agbeattbs 0 @ b ab
s st s t st
and then to check that they are well-defined. The rest is straightforward. O

Corollary 363. Every domain is a subring of some field.

Proof. When A is a domain, A* is a multiplicative system. Applying the previous theorem we
obtain a C-ring A4+ that contains A as subring. Inside this larger C-ring every element ¢ with
a # 0 is invertible, the inverse being g So this new C-ring is a field. O

Definition 364. Let A be a domain. Let S be any multiplicative system in A.
o Agis called localization of A by (the multiplicative system) S.
e In case S is the complement of a prime ideal P in A, Ag is called localization of A at the
prime ideal P; typically, we denote by Ap (without the bar).
e In case S is the complement of the prime ideal (0), Ag is called field of fractions of A.

Example 365. Q is the field of fractions of Z.
Example 366. What is the C-ring Z(7)? This is the localization of Z by the multiplicative
system formed by the non-multiples of 7. So basically,

a

Ly = {b € Q : ged(a,b) =1 and b is not a multiple of 7} .

This is the smallest C-ring in which every integer that is not divisible by 7 has an inverse.

Deeper thoughts 367. Sometimes, particularly in applications to physics, knot theory, or
complex analysis, it becomes necessary to study expressions that are “polynomials with also
negative powers allowed”; that is, expressions of the type

S
€L
with a; taken from some domain A decided a priori, and with ¢; = 0 except for finitely many

exceptions. These expressions are called Laurent polynomials over A and form a C-ring. One
way to understand this C-ring is by considering, inside the usual polynomial ring A[z], the

multiplicative system S & {1,z, 22, 23,...}. The localization of A[z] at S is precisely the set of
Laurent polynomials over A. Usually, it is denoted by A[z, %]
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5.9 Radical ideals

Definition 368. An ideal J of a C-ring A is called radical if the following implication holds for
any x in A and for any positive integer n:

teJ=zxzcl

Proposition 369. Prime ideals and their intersections are radical.

1 1

Proof. If P is a prime ideal and z” is in P, writing 2™ = x - 2" we see that 2”7 is in P;
iterating this argument, we get that = is in P. As for the second part: Since we have just shown
that prime ideals are radical, it suffices to show that the intersection of radical ideals is radical.
But if 2™ € I N J, with both I and J radical, then x € I and = € J. ]

Proposition 370. The radical ideals of 7 are precisely the principal ideals generated by (0), by
(1), and by any product of distinct prime numbers.

Proof. The ideals (0) and (1) are prime and thus radical by Proposition 369. Let m = pips - - - ps,
where the p; are primes such that p; < p;41 for all . Suppose =" is a multiple of m; this means
that all primes p; appear in the factorization of x™, and thus of z; so z is a multiple of m. So
(m) is radical. (In fact, the same argument also proves that (m) = (p1) N (p2) N...N (ps), which
yields another way to prove that (m) is radical, via Proposition 369.) It remains to show that
no other ideal of Z is radical. So, suppose 2 < m = p1p2 - - - ps, where the p; are primes such
. def m . .
that p; = p;y1 for some i. Then z = pi = P1D2- - Pic1Pit1- - Ps IS an integer smaller than m.

2

Since x* is a multiple of m, but z is not, it follows that (m) is not radical. O

Recall that a C-ring is ‘reduced’ if the only nilpotent element is 0.

Theorem 371. Let A be any C-ring with 1. Let I be any ideal of A. Then

I is radical <= A / I is reduced.

Proof. Exercise. O

Theorem 372. In any C-ring A, for any ideal I of A,
rad(I) < {z € A such that In € N\ {0} for which z" € I}.

is the smallest radical ideal containing I. In particular, I = rad(I) if and only if I is radical.

Proof. If x is in I, then 2™ is in I for all n, so I C rad(I). To verify that rad(I) is an ideal, pick
x,y in rad(l). Let m be a positive integer such that 2™ and 3™ are both in I. For any a in A,
clearly (az)™ = a™z™ is in I. Moreover, by Newton’s formula,

2m

(@—y)" = @n) =yt el

k=0

because either k > m, in which case ¥ is in I, or k < m, in which case 2m — k > m and thus

(—y)?" % isin I. Sorad([) is an ideal. It is radical, because if ™ is in rad(I), then ™" is in I
for some n, and so z is in rad(/). Finally, let R be any radical ideal containing I. For any x in
rad(]), if n is an integer for which 2" € I C R, we have that x is in R: so rad(I) C R. The final
claim is an obvious consequence: If I = rad(I) then I is equal to a radical ideal; conversely, if I
is radical, then it is the smallest radical ideal containing I. O
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Notation. Let I be any ideal in a C-ring A. In view of Theorem 372, the ideal rad(I) is usually
called “the radical of I”. Many authors (including Shahriari) use the notation “v/I” instead
of “rad(I)”. This alternative notation works best for Latin lovers: “radical” is the adjective of
“radix”, which is the Latin word for “root”. We prefer the notation “rad(l)” because (1) in
English the connection between “radical” and “root” is less clear, and (2) a square-root notation
seems to suggest that you are interested just in the elements whose square is in 1.

Theorem 373. Let A be a C-ring with 1. For any ideal I C A, the ideal rad(l) coincides
with the intersection of all prime ideals containing I. In particular, every radical ideal is the
intersection of some prime ideals (namely, all the prime ideals containing it).

Proof. Let R be the intersection of all prime ideals contaning I. By Proposition 369, R is a
radical ideal containing I, so by Theorem 372 radI C R. To show the other inclusion, pick
x ¢ rad I. Then I contains none of the elements of

def 2 n _n+l
S={l,z,z% ..., 2" 2", ...}

Let J be an ideal that contains I, is disjoint from all elements of S, and is inclusion-maximal
with respect to these two properties.'> We claim that J is prime. Let us prove the claim by
contradiction: If J is not prime, then there are a,b ¢ J with ab € J. Both the ideals J + (a)
and J + (b) are strictly larger than J, so by inclusion-maximality of J, the ideals J 4 (a) and
J + (b) are no longer disjoint from the list S. In other words,

2™ =j1+a1a and " = jo + asb,
for some positive integers m,n, for some ji, jo in J and for some a1, as in A. But then
2™ = (j1 + a1a)(j2 + azb) = jija + ji(azd) + ja(ara) + ab(araz),

a sum of four elements in J. So 2™ € J, contradicting that .J and S are disjoint. So the claim
is proven: There exists a prime ideal (namely, J) that contains I but does not contain x. Thus
the intersection of all the prime ideals containing I, does not contain z. So x ¢ R. O

Corollary 374. Let A be a C-ring with 1. The set of all nilpotent elements of A is a radical
ideal, which coincides with the intersection of all prime ideals of A.

Proof. Apply Theorem 373 to I = (0): by definition, rad(0) is the set of all nilpotents. O

Theorem 375. Let A be a C-ring with 1. Then
A is reduced <= Alz] is reduced.

Moreover, a polynomial f in Alzx] is nilpotent if and only if all its coefficients are.

Proof. Last line, '<<’. Let f = ag + ... + a,x™, with each a; nilpotent in A. By reading
each equation (a;)™ = 0 as an equation in A[x|, each a; is nilpotent in A[z], too. Since
nilpotent elements in A[x] form an ideal R, each monomial a;z° is also in R; and thus f
(being a sum of monomials in R) is in in the ideal R as well.

20ne may wonder why I am not choosing Z to be simply the complement of S. The reason is that the
complement of S might not be an ideal. For example, if A = Z and S &f {1,3,9,...,3",3"" ...}, then the

complement of S contains both 2 and 5, but not their difference.
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Last line, '=’. Let f be nilpotent in A[z]. We proceed by induction on deg f. If f = 0
or deg f = 0, then f € A and the claim is obvious. If m « deg f > 1, write f =
ag+ ...+ ampx™, with a,, # 0. By induction on n, it is easy to see that the leading term
of f™is (am)™; so if f™ is the zero polynomial, certainly (a,,)” = 0. In particular, since f
is nilpotent in A[z], its leading coefficient a,, is nilpotent in A and in A[z]. But nilpotents
in A[z] form an ideal: so if a,, is nilpotent, also a,,z"™ and g £ f — apz™ are nilpotent.
By inductive assumption, all coefficients a,,_1, ..., a1,ag of g are nilpotent in A.

First part, '=’". If f™ = 0 in A[z], then by the last line all the coefficients of f are nilpotent in
A and thus equal to 0 because A is reduced. So f is the zero polynomial.

First part, '<’. As A C A[z], if a" = 0 in A, then also a™ = 0 in A[z], so a = 0. O

We conclude this section with a beautiful theorem (although sadly, often ignored by text-
books) that fully solves the problem of what polynomials are invertible in Alzx].

Theorem 376. Let A be a C-ring with 1. Let f = a9+ a1z + ...+ apz™ € Alx]. Then

f is invertible <= aq is invertible and all other a;’s are nilpotent.
Proof. “<=". Clearly if a; is nilpotent, so is a;z°. We claim that if v is invertible and b is
nilpotent, then u + b is invertible. To show the claim, pick an n for which ™ = 0 and apply the
identity
l—c"=1-c)1+c++...+ch (21)

to ¢ —but. Since ¢* = —bru " = 0, Equation 21 tells us that 1 — ¢ is invertible. But then so

is (1 — ¢)u = u— cu = u+ b. Hence the claim is proven. The conclusion now follows because ag
is invertible, so ag + ajz is invertible, so (ag + a1z) + azx? is invertible, and so on.

“=". Let g be the inverse of f. Let by be the constant term of g. Since the constant term of
fg is the product of the two constant terms of f and g, from fg =1 in Alx]| we get agbg = 1. So
ag is invertible. Now, let P be any prime ideal of A. Then B e A / p 1s a domain by Theorem
354. Since fg = 1 in A[z], we have fg = 1 in B[z]. But being B a domain, by Theorem 248
this means that f has degree 0. So for all i > 0, we have @; = 0 in B[x]. In other words, for all
i > 0, the coefficient a; of f is in P. But this holds for any prime P. So each a; belongs to the
intersection of all primes of A[z]. By Corollary 374, this means that each a; is nilpotent. O

Corollary 377. For any C-ring A with 1,
A is reduced <= {invertible elements of Alx]} = {invertible elements of A}.

Proof. If A is reduced, its only nilpotent element is 0, so by Theorem 376 the set of invertible
polynomials in A[x] consists of polynomials of the form f = ag with ay invertible in A.

Conversely, if A has a nilpotent element a # 0, Theorem 376 tells us that A[z] has invertible
polynomials in any degree d, like for example 1 + aX?. O

Corollary 378. For any integer m > 2,
{invertible elements of Zy,[x]} D {invertible elements of Zy,}.

with equality if and only if m is a product of distinct primes.
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5.10 Exercises

1

2.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Prove that the subring of a domain, if it contains 1, is again a domain.

Prove that the Cartesian product of two domains is not a domain in general.

. Is the subring of a PID containing 1 always a PID? (Hint: think of subrings of Q[x].)
. Let A be a C-ring with 1; let X be the set of all zerodivisors of A. Is Z an ideal of A?

. Let f: A — B be a nonzero homomorphism between C-rings with 1. Show that if B is a

domain, then f(1) = 1.

. Let f: A — B be a homomorphism between fields. Show that the image of f is either 0,

or a subfield of B.

How many ideals with less than 10 elements does Z have?

. Show that a domain A is a field if and only if A has finitely many ideals.

. If I C J are two ideals of a C-ring A, prove that the image of J under the projection map

from A to A/I is an ideal of A/I; and J is maximal in A if and only if its projection is

maximal in 4 / I

Prove that ZG/(Q) is a domain.

Prove that Ly / (») is a field, for any prime p.

Show that Z%: ¥, Z]/(y +2) is isomorphic to Z[z, y].

Let a be an element of a C-ring A with 1. Let B = A/(a)' The C-ring A[x] has also an
ideal (a), formed by all polynomials that are multiple of a. Is it true that

Inside Q, consider the subring

2[1/2} d:ef{;in suchthataEZ,peN}.

Prove that it is isomorphic to Z[x]/(Qw — 1)

In the quotient ring A = Q] / (@2 — 1) consider the ideal I generated by the element

23 — Tx + 6. Is I proper? Is the quotient A/I a field?

Consider the ideal J = (z + 1,2 — 1) in Z[z]. Is it proper? Is it prime? Is it maximal?
If every proper ideal of A is prime, show that A is a field.

Prove that (5) is not prime in Z[i]. (Hint: There might be two integers a,b such that
(a+bi)(a—0bi) =5...)

96



19.

20.
21.

22.

23.

24.

The Jacobson radical J(A) of a C-ring A with 1, is the intersection of all maximal ideals
of A. Show that J(A) is an ideal.

Show that J(Z) = (0).
Let A be a C-ring with 1 and I an ideal of A. Let

rad I = {a € A such that a" € I for some natural number n}.

Show that rad I is the intersection of all radical ideals contaning I.

Let I,J be ideal of a C-ring A with 1. Let P be a prime ideal of A. Assuming I - J C P,
prove that either I C P or J C P.

Show that the quotient Zs [x]/(xg 4922 4 3) is a field.

Which elements are invertible in Z4[z,y]? Which elements are zero-divisors?
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