
The Fundamental Theorem of Polytopes

Genova, May 2025

Abstract

“Proofs should only be communicated by consenting adults in private”. (Victor Klee)

0 Definitions

Definition 1. A subset A ⊆ Rd is convex if for any two points x,y of A, the entire segment

[x,y]
def
= {tx + (1− t)y ; 0 ≤ t ≤ 1}

is contained in A. Given finitely many points x1, . . . ,xn in A, a convex combination is a point
x =

∑n
i=1 λixi, where

∑n
i=1 λi = 1 and λi ≥ 0 for all i. The convex hull of A, denoted by

conv(A), is the set of all convex combinations of points from A. In other words,

conv(A)
def
= {

n∑
i=1

λiai such that n ∈ N \ {0},
n∑

i=1

λi = 1, λi ≥ 0 and ai ∈ A for all i}.

Lemma 2. conv(A) is the smallest convex subset containing A.

Proof. Easy! Start by showing that conv(A) is convex...

Definition 3. A polytope is the convex hull of finitely many points in Rd.

Definition 4. Let P be a polytope in Rd. A face of P is any subset F ⊂ Rd of the form

F = {x ∈ P such that c · x = c0},

where c · x ≤ c0 is an inequality satisfied by all x in P .
We also say that the linear inequality c · x ≤ c0 supports the face F of P .

In other words, “faces” are where linear functions are maximized within P . Faces may have
different dimensions: For example, P is a face of itself, by taking c = 0 and c0 = 0. But also
the empty set is a face of any polytope P , by taking c = 0 and c0 = 1.

Definition 5. Faces of dimension 0, 1 and dimP − 1 are called vertices, edges, and facets.

Proposition 6. Let P be a polytope in Rd. Let v ∈ P . The following are equivalent:
(i) v is a vertex of P ;
(ii) v cannot be written as a convex combination of points in P \ {v};
(iii) the only vector w for which both v + w and v −w are in P , is w = 0.
(iv) there are d constraints a>j x ≤ bj valid for P which are tight at v (that is, a>j v = bj for

all 1 ≤ j ≤ d) and the vectors a1, . . . ,ad are linearly independent.
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Proof. (i) ⇒ (ii): By contradiction, v =
∑
λixi, with xi ∈ P different from v, with λi ≥ 0 for

all i, and with
∑

i λi = 1. By the assumption, {v} = H ∩P , where H is some hyperplane of the
form c>x = c0, and such that c>xi < c0 for all i, because v is the only vertex in H ∩ P . But
then we reach the contradiction

c0 = c>v = c>(
∑

λixi) =
∑

λic
>xi <

∑
λic0 = c0.

(ii) ⇒ (iii): Write v = 1
2(v + w) + 1

2(v −w).
(iii) ⇒ (iv): By contradiction, let a>j x ≤ bj be any constraint valid for P that is not tight at v.

That means that for some small vector w, both a>j (v + w) ≤ bj and a>j (v −w) ≤ bj . Hence,
both v + w and v −w are in P .
(iv) ⇒ (i): Define a hyperplane by H

def
= {x such that

∑d
j=1 a>j x =

∑d
j=1 bj}. Then every x in

P satisfies a>j x ≤ bj for all j, so in particular it satisfies
∑d

j=1 a>j x ≤
∑d

j=1 bj . Moreover, if x is
any element in P ∩H, then all d constraints are tight at x; but since a rank-d system of linear
equations in Rd has only one solution, we conclude that x = v.

Corollary 7. A polytope is the convex hull of its vertices (and of no proper subset thereof).

Proof. Let A be finite. Let V be the list of vertices of P
def
= conv(A). Let V ′ = V ∪ A. Since

A ⊆ V ′ ⊆ P , clearly P = conv(A) ⊆ conv(V ′) ⊆ conv(P ) = P , which implies P = conv(V ′).
But all points of V ′ not in V can be written as combination of points in V , so P = conv(V ).

Example 8 (Simplices). We define the standard d-dimensional simplex as

∆d def
= conv{e1, . . . , ed+1} ⊆ Rd+1.

This can also be described in terms of facets as follows:

∆d = {x ∈ Rd+1 such that xi ≥ 0 for all i and

d∑
i=1

xi = 1}.

By construction, the d-simplex has d+1 vertices and d+1 facets. For example: ∆1 is a segment
of length

√
2 in R2; ∆2 is an equilateral triangle in R3; ∆3 is a regular tetrahedron in R4.

Example 9 (Cubes). We define the standard d-dimensional cube as

Cd def
= conv{±1,±1, . . . ,±1} ⊆ Rd.

This can also be described in terms of facets as follows:

Cd = {x ∈ Rd such that − 1 ≤ xi ≤ +1 for all i }.

By construction, the d-cube has 2d vertices and 2d facets. For example, C1 is the segment
[−1, 1] ⊆ R, C2 is a square, C3 a cube.

Example 10 (Crosspolytopes). We define the standard crosspolytope as

Cd∗ def
= conv{e1,−e1, . . . , ed,−ed} ⊆ Rd.

This can also be described in terms of facets as follows:

Cd∗ = {x ∈ Rd such that
d∑

i=1

|xi| ≤ 1}.

By construction, the cube has 2d vertices and 2d facets. For example, C1∗ is the segment
[−1, 1] ⊆ R, same as C1; C2∗ is the square C2 rotated of 45 degrees; C3∗ is the octahedron.
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Definition 11 (Affine/Projective Equivalence). Two polytopes P ⊆ Rd and Q ⊆ Re are affinely
equivalent (resp. projectively equivalent) if there is an affine (resp. projective) map f : Rd → Re

that yields a bijection between P and Q when restricted to P .

Definition 12 (Combinatorial Equivalence). Two polytopes P ⊆ Rd and Q ⊆ Re are com-
binatorially equivalent if there is a bijection between the sets of their faces that preserves the
inclusion relation. (Equivalently: if they have the same face poset.)

Proposition 13. Affinely ⇒ projectively ⇒ combinatorially equivalent. Converses are false.

Proof. The implications are obvious. Affine maps preserve parallelism, so a rectangle, a square
and a parallelogram are all affinely equivalent, but a trapezoid is not affinely equivalent to them;
however, all quadrilaterals are projectively equivalent. In general, any projective equivalence in
d-space is determined by the image of d+ 2 points; so if you perturb the position of just one of
the vertices of a regular pentagon, say, you get a polygon with five edges no longer projectively
equivalent to the regular one; but they would still be combinatorially equivalent.

Typically, we have “combinatorial equivalence” in mind. So the convex hull of d+ 1 affinely
independent points in Rd is called “a simplex”.

Definition 14. A polyhedron is any subset of Rd of the form P = {x such that Ax ≤ b}, for
some b ∈ Rm and some matrix A ∈ Rm×d. A polyhedral-cone is any subset of Rd of the form
P = {x such that Ax ≤ 0}. In other words, polyhedra are intersections of finitely many closed
half-spaces, and polyhedral-cones are intersection of finitely many closed linear halfspaces.

Definition 15 (Bounded sets). A set B ⊂ Rd is bounded if it is contained in a large cube; that
is, if there exists an integer n ∈ N such that B ⊆ [−n, n]d.

Definition 16. A set U in Rd contains a ray if there exist x,y in Rd such that the whole set
{x + uy : u ≥ 0} (called infinite ray from x in direction y) is contained in U .

Obviously any set that contains an infinite ray is not bounded. The converse is false in
general, e.g. Z ⊂ R, but true for polyhedra, because of Bolzano–Weierstrass’ theorem:

Lemma 17. A polyhedron is bounded if and only if it contains no ray.

Proof. Let P = {x such that Ax ≤ b} be a polyhedron that contains no ray. By contradiction,
suppose P is not bounded. Then for every n ∈ N, the set U contains a point xn of norm larger
than n. Consider the sequence (yn)n∈N defined by

yn
def
=

xn

||xn||
.

By the Bolzano–Weierstrass theorem, being bounded, (yn)n∈N has a convergent subsequence.
Let y be the limit point of this subsequence. Since all points of (yn)n∈N have norm 1, and satisfy

Ayn =
1

||xn||
Axn ≤

1

||xn||
b <

1

n
b,

passing to the limit of the subsequence we have that ||y|| = 1 and Ay ≤ 0. But then for every
x in P , the ray {x + uy : u ≥ 0} is contained in P , because

A(x + uy) = Ax + uAy ≤ Ax ≤ b.
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1 Fourier-Motzkin elimination and Farkas’ lemma

Theorem 18 (Fourier 1827, Motzkin 1936). Let Ax ≤ b be a system with n ≥ 1 variables and
m linear inequalities. There is a system A′x′ ≤ b′ with n − 1 variables x2, . . . , xn and at most
max(m, m

2

4 ) linear inequalities, such that:
(FM1) Ax ≤ b has a solution if and only if A′x′ ≤ b′ does, and
(FM2) each inequality of A′x′ ≤ b′ is a positive linear combination of one or two of the in-

equalities from Ax ≤ b.
That is, (0|A′) = MA and b′ = Mb for some matrix M with entries ≥ 0.

Proof by example. Consider the 3-variable system

2x− 5y + 4z ≤ 10
3x− 6y + 3z ≤ 9
5x+ 10y − z ≤ 15
−x+ 5y − 2z ≤ −7
−3x+ 2y + 6z ≤ 12.

Let us get rid of the variable x, say. To do this, we rewrite the system as

x ≤ 5 + 5
2y − 2z

x ≤ 2 + 2y − z
x ≤ 3− 2y + 1

5z
x ≥ 7 + 5y − 2z
x ≥ −4 + 2

3y + 2z.

Clearly, one such x exists if and only if the following inequality has a solution:

max

(
7 + 5y − 2z,−4 +

2

3
y + 2z

)
≤ min

(
5 +

5

2
y − 2z, 2 + 2y − z, 3− 2y +

1

5
z

)
.

But such inequality can be equivalently rewritten as a system of inequalities in y and z only, by
imposing that each of the lower bounds is indeed not larger than each of the upper bounds!

7 + 5y − 2z ≤ 5 + 5
2y − 2z

7 + 5y − 2z ≤ 2 + 2y − z
7 + 5y − 2z ≤ 3− 2y + 1

5z
−4 + 2

3y + 2z ≤ 5 + 5
2y − 2z

−4 + 2
3y + 2z ≤ 2 + 2y − z

−4 + 2
3y + 2z ≤ 3− 2y + 1

5z.

Taking all the variables to the left and all the constants to the right hand side, we get the desired
system A′x′ ≤ b′, in which every row is a positive linear combination of exactly two inequalities
from Ax ≤ b. (If in Ax ≤ b we had inequalities not involving x, we just copy-paste them.)

Lemma 19 (Logic Farkas Lemma, essentially Farkas, 1894). Let A ∈ Rm×n, b ∈ Rm.
The system Ax ≤ b is inconsistent ⇐⇒ for some y ≥ 0 in Rm, A>y = 0 and b>y = −1.

Proof by Kuhn, 1956. By induction on the number n of variables. The basis case is n = 0,
when we have A = 0; a system of the type 0 ≤ b is inconsistent when b has some negative
components. Choose an i with bi > 0 and set y

def
= −1

bi
ei. By construction, b>y = −bi

bi
= −1.

If instead Ax ≤ b has at least one variable, we perform Fourier–Motzkin elimination: The new
system A′x′ ≤ b′, where A′ ∈ Rm′×(n−1) for some m′ ≤ max(m,m2/2), (0|A′) = MA and
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b′ = Mb for some nonnegative matrix M , is still inconsistent and has one variable less. By
induction, there exists a vector y′ ≥ 0 in Rm′

such that A′>y = 0 and b′>y′ = −1. But then if
we set y

def
= M>y′, by definition we get

A>y = A>(M>y′) = (MA)>y′ = (0|A′)>y′ = 0> and b>y = b>My′ = (Mb)>y′ = b′>y′ = −1.

Definition 20. Given finitely many vectors v1, . . . , vn in Rd, if V is the d× n matrix that has
the vi’s as columns, we define

cone(V )
def
= {x ∈ Rd such that x = V u for some u ∈ Rn such that u ≥ 0}, and

conv(V )
def
= {x ∈ Rd such that x = V t for some t ∈ Rn such that t ≥ 0, t · 1 = 1}.

If X is of the form cone(V ), we say that X is a finitely-generated cone, and we also sat that
X is generated as cone by the columns of V . A priori, this notion has nothing to do with the
“polyhedral-cone” notion, though today we’ll see why we used the same word. (We have already
a word for when X is of the form conv(V ), right?)

Lemma 21 (Geometric Farkas Lemma). Let A be a real m × n matrix. Let b ∈ Rm. Exactly
one of the following is true:
(F1) The point b lies in the finitely-generated cone C in Rm generated by the n columns

a1, . . . ,an of A.
(F2) There is a hyperplane passing through the origin, of the form {x ∈ Rm such that y>x = 0}

for some y ∈ Rm, such that all vectors a1, . . . ,an (and thus the cone C) lie on one side,
whereas b lies on the other side. That is, ai · y ≥ 0 for all i, whereas b · y < 0.

Proof. (F1) is the same as saying, there exists x ≥ 0 in Rn such that Ax = b. Instead (F2) is
the same as saying, there is a y ∈ Rm such that A>y ≥ 0 in Rn and b>y < 0 in R. If (F1) is
true, then clearly (F2) is false, for otherwise we would have (Ax)>y = b>y < 0 and at the same
time (Ax)>y = x>A>y ≥ x>0 = 0. If instead (F1) is false, then with a cheap trick Ax = b can
be translated as A′x ≤ b′, where

A′
def
=

(
A
−A

)
and b′

def
=

(
b
−b

)
.

The fact that A′x ≤ b′ has no solution x ≥ 0 means that if we define

A′′
def
=

(
A′

−In

)
and b′′

def
=

(
b′

0

)
,

then the system A′′x ≤ b′′ has no solution, with A′′ in R(2m+n)×n. By Logic Farkas’ Lemma,

∃y′′ ≥ 0 in R2m+n such that A′′>y′′ = 0 and b′′>y′′ = −1. (1)

So if we write

y′′ =

 v
w
u

 with v,w ∈ Rm,u ∈ Rn,

then we can read Equation 1 as follows:

∃v,w ≥ 0 in Rm and u ≥ 0 in Rn such that A>v −A>w − u = 0 and b>v − b>w = −1.

In other words,

∃v,w ≥ 0 in Rm such that A>v −A>w ≥ 0 and b>v − b>w = −1.

Setting y
def
= v −w, we conclude that A>y ≥ 0 and b>y = −1.
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2 The Fundamental Theorem for Polyhedra

Definition 22. The Minkowski sum of two subsets A,B ⊂ Rd is

A+B
def
= {a+ b such that a ∈ A, b ∈ B}.

Theorem 23 (Fundamental Theorem, Minkowski 1896, Motzkin 1936). Let P ⊆ Rd.
(I.) P is a finitely-generated cone ⇐⇒ P is a polyhedral-cone.

(II.) P is a polytope ⇐⇒ P is a bounded polyhedron.
(III.) P is a Minkowski sum of a finitely-generated cone and a polytope ⇐⇒ P is a polyhedron.

Proof. We follow the presentation in Schrijver, Theory of Linear and Integer Programming.
I, ‘⇒’: Let C = cone(V ), and let v1, . . . ,ve be the columns of V . Without loss, we may assume

that v1, . . . ,ve span Rd. (If not, let X be their span: then any linear halfspace H of X can
be extended to a linear halfspace H ′ of Rd, so that H ′∩X = H.) Consider all the (finitely
many!) linear halfspaces H = {x such that cx ≤ 0} of Rd such that v1, . . . ,ve are in H
and {x such that cx = 0} is spanned by (d− 1 linearly independent) vectors from the list
v1, . . . ,ve. But cone(V ) is exactly the intersection of these halfspaces. In fact, ⊆ is clear
by construction; ⊇ is proven by contradiction, using the Geometric Farkas’ Lemma: if x is
not a nonnegative linear combination of the vi’s, then some hyperplane through the origin
separates it from C, so that C and x would end up in opposite linear halfspaces.

I, ‘⇐’: Let C
def
= {x such that a>1 x ≤ 0, . . . ,a>mx ≤ 0}. By part (I, ‘⇒’) proved above, we know

that the cone generated by a>1 , . . . ,a
>
m is a polyhedral-cone; in other words, there exists a

matrix B such that cone(a>1 , . . . ,a
>
m) = {x such that Bx ≤ 0}. If we call b1, . . ., bt the

rows of this matrix B, we have that

cone(a>1 , . . . ,a
>
m) = {x such that b1 · x ≤ 0, . . . ,bt · x ≤ 0}. (2)

We claim that
C = cone(b>1 , . . . ,b

>
t ).

In fact, ‘⊇’ is because by Equation 2 we know that bj · ai ≤ 0 for all i in {1, . . . ,m} and
for all j in {1, . . . , t}. By definition of C, this tells us that b>1 , . . ., b>t are in C, so the
cone they generate is also in C. It remains to show ‘⊆’. By contradiction, suppose that
y /∈ cone(b>1 , . . . ,b

>
t ) for some y ∈ C. By the Geometric Farkas’ Lemma, we know that

there exists a vector −w such that

b1 · (−w) ≥ 0, . . . , bt · (−w) ≥ 0, and y · (−w) < 0.

In other words, there exists a vector w such that

b1 ·w ≤ 0, . . . , bt ·w ≤ 0, and y ·w > 0. (3)

Via Equation 2, the first t inequalities above tell us that w ∈ cone(a>1 , . . . ,a
>
m). So write

w = λ1a
>
1 + . . .+ λma>m, for some λi ≥ 0. (4)

Since y in C, by definition of C we must have that a>i y ≤ 0 for all i. In particular,
since λi ≥ 0, we have λia

>
i y ≤ 0 for all i. But then from Equations 3 and 4 we get the

contradiction

0 < y ·w = y · (
m∑
i=1

λia
>
i ) =

m∑
i=1

λia
>
i y ≤ 0.
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III, ‘⇐’: Let P be of the form {x such that Ax ≤ b}, for some matrix A ∈ Rm×d and some
vector b ∈ Rm. This means that P is defined by the m inequalities aix ≤ bi, where ai

is the i-th row of A. The idea is now to homogenize this system by introducing a new
variable x0, and by setting aix − bix0 ≤ 0, together with x0 ≥ 0. If we set x0 = 1 in the
new system, we recover the old one: so the solutions of the new system are simply the
vectors solving of the old one, with a 1 appended. Formally, define

C(P )
def
= {x such that A′x ≤ 0}, where A′ =

(
−1 0
−b A

)
.

Then

P = {x ∈ Rd such that

(
1
x

)
∈ C(P )}. (5)

By definition, C(P ) is an intersection of closed linear halfspaces. But then by part (I),
‘⇐’, C(P) is a finitely-generated cone. Suppose that C(P ) = cone(V ) ⊂ R × Rd. Let
v1,v2, . . . ,ve be the column vectors of V . Without loss, we can assume that the first
coordinate of each vector vi is either 0 or 1. So reorder the column vectors of V as(

0
w1

)
,

(
0

w2

)
, . . . ,

(
0

wk

)
,

(
1

wk+1

)
,

(
1

wk+2

)
, . . . ,

(
1

we

)
.

Let Q be the cone generated by w1, . . . ,wk in Rd. Let R be the convex hull of wk+1, . . . ,we

in Rd. Then from Equation 5 it is easy to see that

P = {x ∈ Rd such that

(
1
x

)
∈ C(P )} = Q+R.

III, ‘⇒’: Let P ⊆ Rd be of the form P = cone(v1,v2, . . . ,vk)+conv(vk+1,vk+2, . . . ,ve). Define

C(P )
def
= cone

((
0
v1

)
, . . . ,

(
0
vk

)
,

(
1

vk+1

)
, . . . ,

(
1
ve

))
.

Clearly, any vector x ∈ Rd belongs to P if and only if

(
1
x

)
∈ C(P ). By part I, ‘⇒’,

the right hand side is a polyhedral-cone in R × Rd. Hence it can be written (separating
the first column of the matrix defining it) as

{
(
λ
x

)
such that (b|A)

(
λ
x

)
≤ 0},

for some matrix A ∈ Rm×d, some scalar λ ∈ R and some vector b ∈ Rm. So a vector
x ∈ Rd belongs to P if and only if Ax ≤ −λb, which means that P is a polyhedral-cone.

II, ‘⇒’: That polytopes are polyhedra follows by part (III), ‘⇒’. Thus it suffices to show that
the convex hull of any bounded set V is bounded. This is easy: if |x| ≤M for all x in V ,
then |

∑n
i=1 λixi| ≤

∑n
i=1 λi|xi| ≤

∑n
i=1 λiM = M . So conv(V ) is bounded.

II, ‘⇐’: This follows immediately from part (III), ‘⇐’, because cones are not bounded.

Remark 24. We already know from Proposition 6 how to pass from the facet to the vertex
description of a polytope: to find the vertices of Ax ≤ b in Rd, with A ∈ Rm×d, we simply
need to choose d out of the m inequalities, put equality signs in them, and solve! Two remarks:
If the solution is not unique, then the rows were linearly dependent, so by Proposition 6 we
may throw the infinitely-many solutions away. Also, the solution may be incompatible with the
remaining inequalities; in this case, we also throw it away. But how to pass from a vertex to a
facet description? For this we need another idea, namely, duality.
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3 The Idea of Duality

Given a cone C in Rd, its polar cone is the set C∗
def
= {c such that cx ≤ 0 for all x ∈ C}. This is a

well-studied set with the remarkable property (proven below) that C∗∗ = C. For this reason, the
polar cone is often called “dual cone”. Following Schrijver’s textbook, we develop an analogous
(and more general) notion of polarity for polyhedra.

Definition 25. For any subset X ⊆ Rd, the polar of X is

X∗
def
= {c ∈ Rd such that cx ≤ 1 for all x ∈ X}.

Lemma 26. For any subset X ⊆ Rd,
(a) X∗ is a convex set containing 0,
(b) for any Y ⊇ X, one has Y ∗ ⊆ X∗;
(c) X∗∗ ⊇ X.

Proof. Straightforward from the definitions.

Remark 27. In general, X∗∗ is larger than X. In fact, one can show that X∗∗ is the topological
closure of conv (X ∪ {0}). Below we will prove a weaker statement: namely, that if X is a
polyhedron containing the origin, then X∗∗ = X. Since we can always shift coordinates to
place the origin inside a given polyhedron, it makes sense for us to use the word “dual” instead
of “polar”. (Note: to make duality an internal operation within the world of polytopes, some
authors like Ziegler require 0 to be in the topological interior of X; we will see that this stronger
assumption is equivalent to the boundedness of X∗.)

Notation. From now on, if P can be written in the form {x ∈ Rd such that Ax ≤ 1},
we simply write P = P (A,1). (Not all polytope are of this form: as Exercise, show that
the polytopes that can be written this way are exactly those containing 0 in their interior.)
Moreover, for any m× d matrix A and any n× d matrix B, we define

P (A,1, B,0)
def
= {x ∈ Rd such that Ax ≤ 1, Bx ≤ 0}.

By definition, P (A,1, B,0) is a polyhedron.

Theorem 28 (Duality for polyhedra). Let P ⊆ Rd be a polyhedron containing {0}. Then:
(i) P ∗ is a polyhedron again;
(ii) P ∗∗ = P ;
(iii) if P = conv({0} ∪ V ) + cone(W ), then P ∗ = P (V >,1,W>,0);
(iv) if P = P (A,1, B,0), then P ∗ = conv({0} ∪A>) + cone(B>).

Proof. (i) By the Fundamental Theorem 23, we can write P as the Minkowski sum of a
polytope and a finitely-generated cone, whence by part (iii) we conclude.

(ii) We only have to show P ∗∗ ⊆ P , the other inclusion being true for all sets P . By contradic-
tion, suppose z is in P ∗∗ but not in P . By Farkas’ lemma, there is some inequality a ·x ≤ β
satisfied by all x in P , but not by z. Since 0 is in P , β ≥ 0. So there are two cases: If
β > 0, then β−1a is in P ∗, so since z ∈ P ∗∗ we obtainβ−1a · z ≤ 1, which contradicts the
fact that a · z > β by definition of z. If instead β = 0, then λa is in P ∗ for all λ ≥ 0. But
since a · z > β = 0, we get that λa · z > 1 for some λ large enough. Another contradiction.

(iii) Write P = conv(0,v1, . . .vm) + cone(w1, . . .wn). Then we claim that

P ∗ = {c ∈ Rd such that c ·vi ≤ 1 for all i = 1, . . . ,m, c ·wj ≤ 0 for all j = 1, . . . , n.} (6)
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The inclusion ‘⊇’ is clear; for the converse, write any x in P as a convex combination of
the vi plus a conic combination of the wj , and compute cx. Since c ·vi ≤ 1 ( i = 1, . . . ,m)
and c ·wj ≤ 0 (j = 1, . . . , n), plugging in you will get c · x ≤ 1. So the claim is proven.
Since V and W are the matrices obtaining juxtaposing the column vectors v1, . . . ,vm and
w1, . . . ,wn, respectively, we can conveniently rewrite Equation 6 as

P ∗ = {c ∈ Rd such that V >c ≤ 1, W>c ≤ 0}.

(iv) We have to show

P (A,1, B,0)∗ = conv(v1, . . . ,vm,0) + cone(w1, . . . ,wn),

where vi is the transpose of the i-th row of A and wi is the transpose of the i-th row of
B. Rather than performing long calculations, we define Q

def
= conv({0} ∪A>) + cone(B>).

Then by part (iii) Q∗ = P . So by part (ii) P ∗ = Q∗∗ = Q.

Definition 29. The relative interior of a polytope P ⊆ Rd (not necessarily full-dimensional) is
the set of y of P not contained in any proper face of P . More generally, for a polyhedron P ,

relintP
def
= {y ∈ Rd such that (ay = a0 and ∀x ∈ P, ax ≤ a0) =⇒ ∀x ∈ P, ax = a0}.

Lemma 30. For any polyhedron P containing {0}, P ∗ is bounded if and only if 0 ∈ relintP .

Proof. Left as exercise.

Corollary 31 (Duality for Polytopes, Ziegler’s version). Let P ⊆ Rd be a polytope such that
0 ∈ relintP . Then:

(i) P ∗ is a polytope;
(ii) P ∗∗ = P ;
(iii) if P = conv(V ), then P ∗ = P (V >,1), and
(iv) if P = P (A,1), then P ∗ = conv(A>).

So if I give you a polytope as a convex hull, i.e. P = conv(v1, . . . ,vn), then how do I find
the hyperplanes defining it? It’s easy: Pass to the polar! Since P ∗ = P (V >,1), you have the
polar described in terms of its facets; by finding the vertices of P ∗, the computer will figure out
the facets of P .

Example 32. Let us find the facets of the convex hull P of the five points −1
0
0

 ,

 1
2
0

 ,

 0
7
2

 ,

 1
0
−1

 ,

 2
3
1

 .

We leave it to you to verify that 0 is in the relative interior of P . Then if V is the 3× 5 matrix
that has the five points above as columns, P ∗ = P (V >,1). In other words, P ∗ is the set of

vectors

 x
y
z

 satisfying

−x ≤ 1
x+ 2y ≤ 1

7y + 2z ≤ 1
x− z ≤ 1

2x+ 3y − z ≤ 1.

9



We now choose 3 out of these 5 inequalities (in any possible way) and set them to equalities.
This leads to

(
5
3

)
= 10 different systems. Each of them has exactly one solution. However, the

first system (namely, −x = 1 and x + 2y = 1 and 7y + 2z = 1) has a solution incompatible
with the remaining inequalities (namely, x = −1 and y = 1 and z = −3, which contradicts
x − z ≤ 1). The four systems that do not make use of the equation −x = 1 have the same
solution (namely, x = 1

3 and y = 1
3 and z = −2

3 ). So out of ten systems, we actually only get six
different acceptable solutions. Hence, P ∗ is the convex hull of the following six points: −1

1
−2

 ,

 −1
1
0

 ,

 −1
5/7
−2

 ,

 −1
−5
18

 ,

 −1
5/3
−2

 ,

 1/3
1/3
−2/3

 .

If W is the 3×6 matrix whose columns are the six points above, we have that P ∗∗ = P (W>,1).

In other words, P ∗∗ is the set of vectors

 x
y
z

 satisfying

−x+ y − 2z ≤ 1
−x+ y ≤ 1

−x+ 5
7y − 2z ≤ 1

−x− 5y − 18 ≤ 1
−x+ 5

3y − 2z ≤ 1
1
3x+ 1

3y −
2
3z ≤ 1.

But P ∗∗ = P . So P has the six facets above. The last facet, corresponding to (the intersection
of P with) the hyperplane 1

3x + 1
3y −

2
3z = 1, contains four out of the five points of P . So in

case you are wondering, P is a pyramid over a pentagon. P ∗ is also a pyramid over a pentagon:
Five of its six vertices lie on the plane x = −1.
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