
h-vectors and beyond

Bologna, May 2025

Abstract

“Proofs should only be communicated by consenting adults in private”. (Victor Klee)

0 Definitions

Definition 1. A subset A ⊆ Rd is convex if for any two points x,y of A, the entire segment

[x,y]
def
= {tx + (1− t)y ; 0 ≤ t ≤ 1}

is contained in A. Given finitely many points x1, . . . ,xn in A, a convex combination is a point
x =

∑n
i=1 λixi, where

∑n
i=1 λi = 1 and λi ≥ 0 for all i. The convex hull of A, denoted by

conv(A), is the set of all convex combinations of points from A. In other words,

conv(A)
def
= {

n∑
i=1

λiai such that n ∈ N \ {0},
n∑

i=1

λi = 1, λi ≥ 0 and ai ∈ A for all i}.

Lemma 2. conv(A) is the smallest convex subset containing A.

Proof. Easy! Start by showing that conv(A) is convex...

Definition 3. A polytope is the convex hull of finitely many points in Rd.

Definition 4. Let P be a polytope in Rd. A face of P is any subset F ⊂ Rd of the form

F = {x ∈ P such that c · x = c0},

where c · x ≤ c0 is an inequality satisfied by all x in P .
We also say that the linear inequality c · x ≤ c0 supports the face F of P .

In other words, “faces” are where linear functions are maximized within P . Faces may have
different dimensions: For example, P is a face of itself, by taking c = 0 and c0 = 0. But also
the empty set is a face of any polytope P , by taking c = 0 and c0 = 1.

Definition 5. Faces of dimension 0, 1 and dimP − 1 are called vertices, edges, and facets.

Example 6 (Simplices). We define the standard d-dimensional simplex as

∆d def
= conv{e1, . . . , ed+1} ⊆ Rd+1.

This can also be described in terms of facets as follows:

∆d = {x ∈ Rd+1 such that xi ≥ 0 for all i and

d∑
i=1

xi = 1}.

By construction, the d-simplex has d+1 vertices and d+1 facets. For example: ∆1 is a segment
of length

√
2 in R2; ∆2 is an equilateral triangle in R3; ∆3 is a regular tetrahedron in R4.
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Example 7 (Cubes). We define the standard d-dimensional cube as

Cd def
= conv{±1,±1, . . . ,±1} ⊆ Rd.

This can also be described in terms of facets as follows:

Cd = {x ∈ Rd such that − 1 ≤ xi ≤ +1 for all i }.

By construction, the d-cube has 2d vertices and 2d facets. For example, C1 is the segment
[−1, 1] ⊆ R, C2 is a square, C3 a cube.

Example 8 (Crosspolytopes). We define the standard crosspolytope as

Cd∗ def
= conv{e1,−e1, . . . , ed,−ed} ⊆ Rd.

This can also be described in terms of facets as follows:

Cd∗ = {x ∈ Rd such that
d∑

i=1

|xi| ≤ 1}.

By construction, the cube has 2d vertices and 2d facets. For example, C1∗ is the segment
[−1, 1] ⊆ R, same as C1; C2∗ is the square C2 rotated of 45 degrees; C3∗ is the octahedron.

Definition 9 (Affine/Projective Equivalence). Two polytopes P ⊆ Rd and Q ⊆ Re are affinely
equivalent (resp. projectively equivalent) if there is an affine (resp. projective) map f : Rd → Re

that yields a bijection between P and Q when restricted to P .

Definition 10 (Combinatorial Equivalence). Two polytopes P ⊆ Rd and Q ⊆ Re are com-
binatorially equivalent if there is a bijection between the sets of their faces that preserves the
inclusion relation. (Equivalently: if they have the same face poset.)

Proposition 11. Affinely ⇒ projectively ⇒ combinatorially equivalent. Converses are false.

Proof. The implications are obvious. Affine maps preserve parallelism, so a rectangle, a square
and a parallelogram are all affinely equivalent, but a trapezoid is not affinely equivalent to them;
however, all quadrilaterals are projectively equivalent. In general, any projective equivalence in
d-space is determined by the image of d+ 2 points; so if you perturb the position of just one of
the vertices of a regular pentagon, say, you get a polygon with five edges no longer projectively
equivalent to the regular one; but they would still be combinatorially equivalent.

Typically, we have “combinatorial equivalence” in mind. So the convex hull of d+ 1 affinely
independent points in Rd is called “a simplex”.

Definition 12. The graph of a polytope is formed by all its faces of dimension ≤ 1. The
dual graph of a d-dimensional polytope has nodes corresponding to its facets; two nodes are
connected by an arc if and only if the corresponding facets are adjacent, i.e. if their intersection
is (d− 2)-dimensional.

Remark 13. The graph does not determine the polytope, nor its dimension: for example, Kn

is the graph of the (n − 1)-simplex, but also of infinitely many polytopes of dimension d ≥ 4
(e.g. the “d-dimensional cyclic polytope on n vertices”, for n > d ≥ 4). Dual graphs determine
simplicial polytopes, though (Blind–Mani–Kalai).

Remark 14. Most graphs are not graphs of polytopes. For example, a 2-edge path (and
any graph containing it as induced subgraph) is not the graph of any polytope, for connectivity
reasons. K3,3 is 3-regular and 3-connected, but it is not the graph of any 3-dimensional polytope,
because it is not planar. An even more interesting example, the graph obtained by removing a
7-cycle from K8, is given by Grünbaum (pages 214–215 of his Convex Polytopes book).
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1 Shellability

Definition 15. A polytopal complex is a finite, nonempty collection of polytopes, called “faces”,
closed under taking intersections and under taking faces (i.e. intersections with hyperplanes).
Simplicial complexes (resp. cubical complexes) are polytopal complexes where all polytopes are
simplices (resp. cubes). A polytope is called simplicial if its boundary is a simplicial complex.
The inclusion-maximal polytopes in a polytopal complex, with slight abuse of notation, are
called facets. A polytopal complex is pure if all its facets have same dimension.

Definition 16 (Shellability - simplicial case). A pure simplicial complex C of dimension d with
N facets is shellable if either d(N − 1) = 0, or one can order its facets F1, . . . , FN so that for
each j ≥ 2, the intersection of Fj with the union of the previous Fi’s is pure (d−1)-dimensional.

Example 17. Shellable 1-dimensional complexes are just connected graphs.

Example 18. Let d > 1. The boundary ∂∆d of the d-simplex is ‘extendably’ shellable: any
ordering of its facets is a shelling order. So any pure (d − 1)-dimensional subcomplex of ∂∆d

is shellable, and the shelling order can be continued to a shelling of ∂∆d. (In contrast, the
boundary of the octahedron is shellable, but not extendably.)

Because of Example 18, the next definition boils down to Definition 16 in the simplicial case:

Definition 19 (Shellability). Let C be a pure polytopal d-complex with N facets.
A shelling order for C is:

• if d = 0, any ordering of the points of C;
• if d ≥ 1, any order F1, . . . , FN of the facets of C so that for each j ≥ 2, the intersection of
Fj with the union of the previous Fi’s is pure (d − 1)-dimensional and admits a shelling
order that can be extended to a shelling order of ∂Fj . (In particular, all the polytopes in
C must have boundaries that admit shelling orders.)

A pure polytopal complex is called shellable if it admits a shelling order.

Theorem 20 (Bruggesser–Mani 1970). Let d > 1. The boundary of every d-polytope is shellable.
In fact, for every boundary face F , there is a shelling of the boundary of the polytope in which
all facets that contain F are listed before the others.

Proof. “Rocket shelling”. Place the polytope so that the origin is interior, and order the vertices
of the dual polytope according to a generic linear function. The function can be chosen to have
the barycenter of F as maximum (i.e. the rocket can lift off from the middle of F ).

In the previous theorem one can of course replace “before the others’ with “after the others”,
because the reverse of a rocket shelling is also a rocket shelling. More generally:

Lemma 21 (Ziegler, Lemma 8.10). Let S be a shellable polytopal d-complex in which every (d−
1)-face is in exactly two d-faces. If F1, F2, . . . , Fs is a shelling order for S, so is Fs, Fs−1, . . . , F1.

Proof. For any Fj in the shelling, for any (d−1)-face G of Fj , there is a unique other facet Fi of
S such that G = Fi ∩ Fj . This other facet can appear either earlier (i < j) or later (i > j) than
Fj . The roles are interchanged if we reverse the shelling of S, while also reversing (by induction
on the dimension) the shellings of the boundaries of its facets.

By induction, using Van Kampen’s theorem or similar theorems in topology, one can actually
say something about the topology:
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Lemma 22 (Zeeman). Let S be a shellable polytopal d-complex in which every (d − 1)-face is
in at most two d-faces. Then S is homeomorphic to a ball or a sphere. More generally, if C is
any shellable polytopal d-complex, then π1(C) = . . . = πd−1(C) = 0.

After Bruggesser–Mani’s theorem, it is natural to ask whether every convex d-ball is shellable:

Example 23 (Rudin’s ball). If F1, . . . , FN is any shelling order for a d-ball, by Lemma 22
for any j ≤ N − 1 the complex F1 ∪ . . . ∪ Fj is a shellable d-ball. But in 1958 Mary Ellen
Rudin gave an example of a subdivision of a tetrahedron, with f -vector (14, 66, 94, 41), in which
no minitetrahedron could possibly be the last in a shelling order, as the union of the other
minitetrahedra is not a ball. Thus not all subdivisions of the tetrahedron are shellable.

There is a positive result on this though, if we are allowed to subdivide the complex further:

Theorem 24 (Adiprasito–Benedetti, 2017). If a polytonal d-complex C is convex, then the
second barycentric subdivision of C is shellable.

It is open whether already the first barycentric subdivision of any convex complex is shellable.
Here is an example of the usefulness of shellability:

Theorem 25 (Euler’s formula). For any d-polytope P ,

f0 − f1 + . . .+ (−1)d−1fd−1 = 1− (−1)d.

Proof. The reduced Euler characteristic of an arbitrary polytopal complex C is defined by

χ(C)
def
= −1 + f0(C)− f1(C) + . . .+ (−1)dimCfdimC .

It is easy to see that χ is additive, i.e. χ(C ∪D) + χ(C ∩D) = χ(C) + χ(D). What we want
to show is that χ(∂P ) = −(−1)d, or if you prefer, χ(∂P ) = (−1)d−1. Now given any d-polytope
P , let F1, . . . , FN be a shelling order for ∂P . We claim that

χ(F1 ∪ . . . ∪ Fj) =

{
0, for 1 ≤ j ≤ N − 1

(−1)d−1, for j = N.

Note that the claim implies our desired conclusion χ(∂P ) = (−1)d−1 (it’s the j = N case!),
which in turns implies that χ(P ) = (−1)d−1 + (−1)d = 0 for every d-polytope P . Let us show
the claim by double induction, on the dimension d and on the number of facets j. When d = 1,
P is a segment E with two endpoints, and our claim is clear: we have j = N = 1 and

χ(E) = −1 + 2− 1 = 0 = 1− (−1)0.

Now suppose d ≥ 2. Since the Fi’s are (d− 1)-polytopes, by induction on the dimension we can
assume that χ(Fi) = 0. Moreover, the intersection of each Fj with the previous Fi is a shellable
part of ∂Fj , but not the whole Fj unless j = N ; thus again by induction on d we have that
χ(Fj ∩

⋃
i<j Fi) = 0 if j < N and χ(FN ∩

⋃
i<N Fi) = χ(∂Fi) = (−1)d−2. But then by induction

on j, using additivity, we get χ(F1 ∪ . . . ∪ Fj) = 0 if j < N ; and again by additivity

χ(F1 ∪ . . . ∪ FN ) = χ(
⋃
i<N

Fi) + χ(FN )− χ(FN ∩
⋃
i<N

Fi) = 0 + 0− (−1)d−2 = (−1)d−1.

Remark 26. Using tools that are not particularly difficult but are beyond the purpose of these
lessons (like elementary knot theory) it is possible to show that in each dimension d ≥ 3, there
are many more shellable d-spheres than the boundaries of (d+1)-polytopes; and there are many
more d-spheres than the shellable ones. In contrast, when d = 2 this gap disappears: There is
a 100-year old theorem by Steinitz that says, “every polytopal complex homeomorphic to the
2-sphere is combinatorially equivalent to the boundary of some 3-polytope”.
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2 The h-vector

The face vector of (the boundary of) a d-dimensional polytope counts the number of faces in
each dimension; since the empty face is by convention (−1)-dimensional, this results in a vector
(f−1, f0, . . . , fd−1) of d integers (so one more than the dimension of the complex!), with f−1 = 1.
We wish to encode the f -vector of a (d− 1)-complex in a polynomial, but “backwards”. We’ll
be more precise soon; but the idea is that the reverse of f is easily obtained from the reverse of h
by multiplying it by some invertible integer matrix U . (This U is the matrix that has

(
i
j

)
in row

i and column j, so it’s upper triangular with 1s on the diagonal... which explains invertibility.)

Definition 27. Given a vector of integers (f−1, f0, . . . , fd−1), with f−1 = 1, the f -polynomial
is defined by

f(x)
def
= fd−1 + fd−2x+ . . .+ f−1x

d =
d∑

i=0

fi−1x
d−i.

The h-polynomial is then defined by

h(x) = f(x− 1) or equivalently, f(x) = h(x+ 1).

The coefficients of the h-polynomial are defined a posteriori, by the identity

h(x) = hd + hd−1x+ hd−2x+ . . .+ h1x
d−1 + h0x

d =

d∑
i=0

hix
d−i. (1)

Remark 28. Notice three important details:
(1) The h-vector of a (d− 1)-dimensional complex consists of d + 1 integers, (h0, . . . , hd).

We will see below that h0 = 1 and h1 = f0 − d; moreover, the sum of the hi’s is just fd−1.
(2) The definition above produces the h-vector for any complex for which the f -vector is defined ;

so in particular, for non-simplicial complexes. In fact, it makes sense even if f is a vector of
arbitrary integers, like (1, 5, 12) (which is not the f -vector of a graph – why?)

(3) Even if the fi’s are in N, the hi are in Z but not necessarily in N, as the next example shows.

Example 29. Consider the 1-dimensional simplicial complex G consisting of the five edges 12,
13, 23, 24, 34. Note that both this facet order and its reverse are shelling orders. Now, G has
f -vector (1, 4, 5). As f(x)

def
= 5 + 4x+ x2 and

h(x)
def
= f(x− 1) = 5 + 4(x− 1) + (x− 1)2 = 2 + 2x+ x2,

the complex has h-vector (1, 2, 2). Thus having a shelling order whose reverse is also a shelling
order does not make the h-vector palindromic, as Ziegler seems to imply on pages 252.

Example 30. Consider the 2-dimensional simplicial complex C consisting of two triangles with
a vertex in common. It has f -vector (1, 5, 6, 2). As f(x)

def
= 2 + 6x+ 5x2 + x3 and

h(x)
def
= f(x− 1) = 2 + 6(x− 1) + 5(x− 1)2 + (x− 1)3 = −x+ 2x2 + x3,

the complex has h-vector (1, 2,−1, 0). Note that one entry is negative.

Example 31. Consider the 2-dimensional polytopal complex D consisting of the boundary of
the cube. It has f -vector (1, 8, 12, 6). As f(x)

def
= 6 + 12x+ 8x2 + x3 and

h(x)
def
= f(x− 1) = 6 + 12(x− 1) + 8(x− 1)2 + (x− 1)3 = 1− x+ 5x2 + x3,

this cubical complex has h-vector (1, 5,−1, 1). Again, note that one entry is negative.
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Theorem 32 (McMullen, Stanley). Let (h0, . . . , hd) be the h-vector associated to an f -vector
(f−1, f0, . . . , fd−1).

(I) hk =
∑k

i=0(−1)k−i
(
d−i
d−k
)
fi−1, so in particular h0 = f−1 = 1 and h1 = −df−1+f0 = f0−d.

(II) fk−1 =
∑k

i=0 hi
(
d−i
k−i
)
, so in particular fd−1 = h0 + h1 + . . .+ hd.

(III) If we define the reverse f-vector f∗ by f∗i
def
= fd−1−i for all i ∈ {0, . . . , d}, and the reverse

f-vector h∗ by h∗i
def
= hd−i, then as matrices f∗ = Uh∗, where U is the upper triangular

matrix defined by Ui,j
def
=
(
i
j

)
.

(IV) There is a trick due to Stanley to compute h from f .
(V) In a simplicial complex that is the boundary of a d-dimensional (simplicial) polytope P ,

the hi count the vertices of in-degree i in an orientation of the edges of the dual polytope
P ∗ according to a generic linear functional. This implies hi ≥ 0 and hi = hd−i.

(VI) More generally, in a simplicial complex that is shellable and homeomorphic to the
(d − 1)-sphere, the hi’s count facets whose restriction set has size i, which still implies
hi ≥ 0 and hi = hd−i.

(VII) More generally, in a simplicial complex that is homeomorphic to the (d−1)-sphere, we
have no clue on what the hi’s count, but we can still prove that hi ≥ 0 and hi = hd−i.

Proof. (I) By definition of h and f and by the Newton formula,

h(x) = f(x− 1) =

d∑
i=0

fi−1(x− 1)d−i =

d∑
i=0

fi−i

d−i∑
`=0

(
d− i
`

)
xd−i−`(−1)`.

Let us compare the coefficients of xd−k in the two sides of the polynomial identity above.
On the left side, this is by definition hk, cf. Equation (1). On the right hand side, once
i is chosen, d− i− ` is equal to d− k precisely when ` = k − i; so we get

hk =
d∑

i=0

fi−1

(
d− i
k − i

)
(−1)k−i =

d∑
i=0

fi−1

(
d− i
d− k

)
(−1)k−i.

But the binomial
(
d−i
d−k
)

is 0 if k > d, so we may as well stop the sum at k.
(II) By definition of f and h and by the Newton formula,

f(x) = h(x+ 1) =
d∑

i=0

hi(x+ 1)d−i =
d∑

i=0

hi

d−i∑
`=0

(
d− i
`

)
xd−i−`.

By equating the coefficient of xd−k on both sides, we get

fk−1 =

d∑
i=0

hi

(
d− i
k − i

)
=

d∑
i=0

hi

(
d− i
d− k

)
, (2)

a sum that can be stopped at i = k, since
(
d−i
d−k
)

= 0 for k > d.
(III) From Equation 2 above, for all j ∈ {0, . . . , d} we get that

f∗j
def
= f(d−j)−1

!
=

d∑
i=0

hi

(
d− i

d− j − i

)
=

d∑
i=0

hi

(
d− i
j

)
.

Since h∗i
def
= hd−i for all i, via a reindexing trick we conclude

f∗j =
d∑

i=0

hi

(
d− i
j

)
=

d∑
`=0

hd−`

(
`

j

)
=

d∑
i=0

hd−i

(
i

j

)
=

d∑
i=0

h∗i

(
i

j

)
.
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(IV) Stanley’s trick consists in

• placing A0,0
def
= 1 on top of an equilateral triangle with horizontal basis;

• writing elements A0,`
def
= 1 downwards on the left edge, until ` = d+ 1.

• writing elements Ak,k
def
= fk−1, i.e. the f -vector downwards on the right edge.

• then computing Ak,`
def
= Ak,`−1 − Ak−1,`−1, i.e. each element is the difference of

what’s above on the right, and what’s above on the left.
The trick is that Ak,d+1 = hk for all k ∈ {0, . . . , d}; that is, “the h-vector appears
horizontally on the bottom line”, which is the (d+ 2)-nd. (Recall that the dimension of
the complex was d−1, so when you stop you should see a table with three more rows than
the dimension of the complex). Why does it work? If we define a map a : N× N −→ Z
by

a(k, `)
def
=

k∑
i=0

(−1)k−i
(
`− 1− i
k − i

)
fi−1

with the convention that
(−n

0

) def
= 1 for all n ∈ N, it is easy to see that

• a(0, `) = 1,
• a(k, k) =

∑k
i=0(−1)k−i

(
k−i−1
k−i

)
fi−1 = fk−1,

• a(k − 1, k) =
∑k−1

i=0 (−1)k−1−ifi−1 = fk−2 − fk−3 + . . .+ (−1)kf0 + (−1)k+1,
• and most importantly,

a(k, `− 1)− a(k − 1, `− 1) =
∑k

i=0(−1)k−i
(
`−2−i
k−i

)
fi−1 −

∑k−1
i=0 (−1)k−1−i(`−2−i

k−1−i
)
fi−1 =

=
∑k

i=0(−1)k−i
(
`−2−i
k−i

)
fi−1 +

∑k−1
i=0 (−1)k−i

(
`−2−i
k−1−i

)
fi−1 =

=
∑k

i=0(−1)k−ifi−1

((
`−2−i
k−i

)
+
(
`−2−i
k−1−i

))
=

=
∑k

i=0(−1)k−ifi−1

(
`−1−i
k−i

)
= a(k, `).

Hence, Ak,` = a(k, `) for all k, `. And in particular

Ak,d+1 = a(k, d+ 1) =
k∑

i=0

(−1)k−i
(
d− i
k − i

)
fi−1 = hk.

Note that Stanley’s trick works for numerical reasons, so it would also work if we wanted
to compute the h-vector of a non-simplicial complex from its f -vector, say.

(V) The poset of the faces of P ∗ is the poset of the faces of P “upside down”; in particular,
fr(P

∗) = fd−1−r(P ). Since P is simplicial, the graph of P ∗, which is the dual graph of
P , is d-regular, and every i edges incident to some vertex x of P ∗ uniquely determine
an i-face of P ∗ that includes them. Now, fix a drawing D of P ∗ in Rd so that all its
vertices have different quotas. Orient all the edges of P ∗ downwards. This induces an
orientation on the graph of P ∗ with the following obvious properties:
(a) the orientation is acyclic;
(b) each face has exactly one sink and one source (the highest resp. lowest vertex);
(c) any vertex has in-degree k if and only if it has out-degree d− k;
(d) any vertex of in-degree k will be a sink in exactly 2k faces (because as we said above

any choice of i of these k edges uniquely determines one such face).
Let Hr(P

∗, D) count the vertices of in-degree r with respect to the drawing D. This
defines a vector H(P ∗,D) = (H0(P ∗,D), . . . ,Hd(P ∗,D)) of non-negative integers adding
up to f0(P ∗). Note that with an “upside-down drawing” D′ that reverses the orientation
of all edges of the graph of P ∗, vertices that had in-degree r become of in-degree d− r
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with the drawing D′; so Hd−r(P
∗,D′) = Hr(P

∗,D). Next, we claim that for every
drawing D chosen,

fk(P ∗) =

d∑
r=0

Hr(P
∗,D)

(
r

k

)
. (3)

Let us prove the claim. Let v be a vertex of P ∗ that has in-degree r in the chosen
drawing. The number of k-faces containing v and for which v is “sink” is exactly

(
r
k

)
,

because any k edges incident to v span a k-face. Since each k-face has exactly one sink,
the right-hand side above counts all k-faces exactly once. So Equation (3) is proven.
Equation (3) has two immediate yet powerful consequences:

• the vector H = H(P ∗,D) depends only on P ∗, because Equation (3) tells us that,
up to an invertible constant matrix U , H equals to the f -vector of P ∗. In particular,
Hd−r(P

∗,D) = Hd−r(P
∗,D′) = Hr(P

∗,D). So the vector H is palindromic!
• If we compare part (II) of the present theorem with the equation

fk−1(P ) = fd−k(P ∗) =

d∑
r=0

Hd−r(P
∗,D)

(
r

d− k

)
=

d∑
i=0

Hi(P
∗,D)

(
d− i
k − i

)
(4)

we see that Hi(P
∗,D) = hi(P ) for all i. In other words, H is the h-vector of P !

(VI) Let C be a shellable simplicial complex of dimension d− 1. Let F1, . . . , FN be a shelling
order for its facets. For any j ∈ {1, . . . , N}, define the “restriction set”

Rj
def
= {v ∈ Fj such that del(v, Fj) ⊆ Fi for some i < j}.

In other words, Rj is the face spanned by the vertices v of Fj with the property that
the deletion of v from Fj is already contained in one of the earlier facets.
We claim that in a shelling order, the “new faces” added in the j-th step (i.e. the faces
contained in F1∪. . .∪Fj−1∪Fj , but not in F1∪. . .∪Fj−1) are exactly the faces G such that
Rj ⊆ G ⊆ Fj . Let us show the claim: let G ⊆ Fj be a face not contained in F1∪. . .∪Fj−1.
By contradiction, suppose that some vertex v of Rj is not in G. Then G belongs to the
deletion of v. So by definition of Rj , G is contained in some face Fi with i < j, a
contradiction. So all vertices of Rj are in G, that is, Rj ⊆ G. Conversely, let G be a face
such that Rj ⊆ G ⊆ Fj . Being in Fj , clearly G ⊆ F1 ∪ . . .∪Fj−1 ∪Fj . By contradiction,
suppose that G is contained in F1 ∪ . . .∪Fj−1, or in other words, that G is in also some
Fh with h < j. Then G ⊆ Fh ∩Fj , which means that dim(Fh ∩Fj) = dimFj − 1. Let w
be the vertex in Fj not in Fj ∩ Fh. Since Rj ⊆ (Fh ∩ Fj) = del(w,Fj), we have w /∈ Rj .
At the same time, since del(w,Fj) ⊆ Fh, we would have w ∈ Rj ; a contradiction. So
the claim is proven. But then by induction on j, if F1, . . . , FN is a shelling order, then
C is the disjoint union of the “intervals” [R1, F1], . . . , [RN , FN ]. In particular all the
(k − 1)-faces of C are partitioned into intervals [Rj , Fj ]. Each one of these intervals, if

|Rj | = i, contains exactly
(
d−i
k−i
)

faces of dimension k−1 (because the Fj are all simplices,
so the poset [Rj , Fj ] is Boolean, i.e. it’s isomorphic to the poset of all subsets of a given
finite set.) So for each i in {0, . . . , d} set

ri(C)
def
= |{j ∈ {1, . . . , s} such that |Rj | = i}|.

Since there are exactly ri(C) intervals [Rj , Fj ] with |Rj | = i, since these intervals are

disjoint, and since each one of them contains exactly
(
d−i
k−i
)

faces of dimension k − 1,

fk−1(C) =

k∑
i=0

ri(C)

(
d− i
k − i

)
. (5)
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Comparing this with item (II) above tells us that

hi = ri(C).

Thus hi ≥ 0. So far we never used the “sphere” assumption. We do need it to show that
hk = hd−k though: Compare Example 29. Details are not so easy, but the bottom line
is: In a sphere, not only the reverse of a shelling on a sphere is again a shelling (as we
saw in Lemma 21), but also, the restriction set for Fj in the reverse shelling is exactly
del(Rj , Fj), the complement of the restriction for the shelling we started with. Since
|Rj | = k if and only if | del(Rj , Fj)| = d− k, we conclude.

(VII) This part is too difficult to explain quickly, but it is proven via commutative algebra:
To every simplicial complex C with n vertices one can bijectively associate a radical
monomial ideal IC in S

def
= R[x1, . . . , xn]. The quotient of S by IC is called Stanley-

Reisner ring of C. If we start with a simplicial complex C homeomorphic to a sphere,
this ring turns out to be Cohen–Macaulay (which is the reason for hi ≥ 0) and even
Gorenstein (which is the reason for hk = hd−k).

The proof of part (VI) of Theorem 32 actually proves a few more facts.

Theorem 33 (Seidel). Any (simplicial) shellable (d− 1)-sphere on n vertices has a number of
facets bounded above by a polynomial in n of degree bd/2c.

Proof. We give a proof for simplicial spheres, but we can reduce ourselves to the simplicial case
by subdividing all facets into simplices “without adding extra vertices”. For d = 2 the claim
is obvious: a polygon with n vertices has exactly n edges. For d = 3, from Euler’s formula
n− e+ f = 2 and from 3r = 2e (which comes from the simplicial assumption) we get that the
number f of facets is exactly 2n − 4. For d ≥ 4, the number of vertices no longer determines
the number of facets. However, set `

def
= bd/2c ≥ 2. Fix a shelling. For any facet Fj , let Rj be its

restriction set. Clearly, either Rj has size at most `, or its complement del(Rj , Fj) has size at
most `. So either in our shelling or in its reverse, the facet Fj has a restriction set of size ≤ `.
Since the association “facet → restriction set” is injective, we get

fd−1 ≤ 2 · |{k-faces with k ≤ `}| ≤ 2
∑̀
i=0

(
n

i

)
.

Definition 34. A d-dimensional simplicial complex P is called partitionable if for each facet
Fj there is a face Rj (called “the restriction set of Fj” such that for every face F of P , there
is exactly one j ∈ {1, . . . , N} such that Rj ⊆ F ⊆ Fj . (In other words, a simplicial complex is
partitionable if its face poset can be partitioned into intervals that all stop at a facet.)

Proposition 35. Every shellable simplicial complex is partitionable.

Proposition 36. Every partitionable simplicial complex has hi ≥ 0 for all i, since the hi(P )
counts the facets of P whose restriction set has size i.

Definition 37. A simplicial complex with facets F1, . . . , FN is doubly-partitionable if there are
faces R1, . . . , RN such that:

(i) for every face F of P , there is exactly one i ∈ {1, . . . , N} such that Ri ⊆ F ⊆ Fi, and
(ii) for every face F of P , there is exactly one j ∈ {1, . . . , N} such that del(Rj , F ) ⊆ F ⊆ Fj .

Proposition 38. Every shellable sphere is doubly-partitionable.

Proposition 39. Every (d−1)-dimensional doubly-partitionable simplicial complex has h-vector
satisfying hi = hd−i.
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3 Some recent developments

This section collects together a few results (typically without proof) about f -vectors. The first
result is a conjecture by Imre Baranyi, recently proven by Joshua Hinman:

Proposition 40 (Hinman 2022). Let 0 ≤ k < d be integers. Let P be any d-polytope. Then

fk(P )

f0(P )
≥ 1

2

[(
dd/2e
k

)
+

(
bd/2c
k

)]
and

fk(P )

fd−1(P )
≥ 1

2

[(
dd/2e

d− k − 1

)
+

(
bd/2c

d− k − 1

)]
.

In particular, fk(P ) ≥ min (f0(P ), fd−1(P )).

It is natural to conjecture (Motzkin) the unimodality of the f -vectors of polytopes. This is
however false, even in the simplicial case:

Proposition 41 (Eckhoff, Björner). The f -vectors of simplicial d-polytopes are unimodal if and
only if d ≤ 19: There is a simplicial 20-polytope with f11 > f12 < f13.

Proposition 42 (Björner 1981). Let d ≥ 3. For simplicial d-polytopes

1 = f−1 < f0 < . . . < fbd/2c−1 ≤ fbd/2c and fb3(d−1)/4c > . . . > fd−2 > fd−1,

and this is best possible: for any p, d such that bd/2c ≤ p ≤ b3(d− 1)/4c, there is an f -vector
whose maximum entry is fp.

Note that there is no contradiction between the two statements: The second one implies that
all f-vectors of polytopes of dimension 10 or less, are unimodal. In fact, for d = 19, the second
statement tells you that 1 < f0 < . . . < f8 ≤ f9 ≤ f10 and f13 > . . . > f17 > f18.

A log-concave sequence is a sequence that satisfies a2
i ≥ ai−1ai+1 for all i. It is easy to see

that if a finite sequence (ai) is non-negative, log-concave, and without internal zeroes, then it is
unimodal.

Proposition 43 (Major 2013). The f-vectors of neighborly polytopes are log-concave.

Neighborly polytopes on n vertices are those with graph Kn. It took quite long to estab-
lish the previous result, even if we did have a formula counting the number of k-faces of any
neighborly polytopes:

Proposition 44. Let 0 ≤ k ≤ d be integers. Let P be any neighborly d-polytope on f0 = n > d
vertices. If d is odd,

fk−1 = 2

d−1
2∑

i=0

(
n− d− 1 + i

i

)
.

If d is even,

fk−1 =

(
n− d− 1 + d/2

d/2

)
+ 2

d−2
2∑

i=0

(
n− d− 1 + i

i

)
.

Proof. See Ziegler, pages 255–257.
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Upper Bound Theorem

The following theorem was conjectured by McMullen (first part) and Klee (second part):

Theorem 45 (UBT, McMullen 1970, Stanley 1975). Among all d-polytopes with n vertices, the
one with the most k-faces, for any k, is any neighborly polyope. In fact, the previous statement
remains true if we replace “among all d-polytopes” with “among all polytopal (d− 1)-complexes
homeomorphic to the (d− 1)-sphere”.

Proof sketch. For polytopes, McMullen’s inductive proof is sketched in Ziegler’s book. Proving
the UBT for polytopes is equivalent to proving it for simplicial polytopes, because from a
polytope P we can always obtain a simplicial polytope P ′ with same vertices, but more faces.
This can be shown with a convexity argument (namely, a slight perturbation of the position of
the vertices in non-simplicial facets) or with a purely combinatorial “pulling triangulation” (as
done by Richard Stanley).

It remains to show the UBT for (d−1)-spheres. Via the Stanley-Reisner correspondence, sim-
plicial complexes correspond to certain squarefree monomial ideals. Since fk−1 =

∑k
i=0 hi

(
d−i
k−i
)
,

the problem of maximizing fk−1 is equivalent to the problem of maximizing the hi’s. These
hi’s are dimensions of certain vector spaces, studied by Hilbert and Macaulay, and they sat-
isfy certain inequalities described by Macaulay. More specifically, if ∆ is a (d− 1)-dimensional

Cohen–Macaulay complex on n vertices, if we call K[∆]
def
= K[x1, . . . , xn]/

I∆
, then there exists a

“regular sequence” θ1, . . . , θd of d elements of K[∆], and we have

Hilb
(
K[∆]/

(θ1, . . . , θd)

)
= (1− t)d Hilb (K[∆]) = (1− t)d

d∑
i=0

hi(∆)ti

(1− t)d
=

d∑
i=0

hi(∆)ti.

But since K[∆]/
(θ1, . . . , θd) is generated as a K-algebra by n − d elements of degree one, the

hi cannot exceed the number of monomials of degree i in n− d variables. From this we get an
upper bound for the hi’s of the form

hi ≤
(
n− d− 1 + i

i

)
,

with equality for all k if and only if the complex is “neighborly”.

Lower bound theorem

Every d-polytope has at least d+ 1 vertices, so 1 ≤ −d+ f0, which can be rewritten as

h0 ≤ h1.

Grünbaum first noticed the following fact:
• the f -vector of 2-polytopes satisfies f1 = f0;
• the f -vector of simplicial 3-polytopes satisfies f1 = 3f0 − 6;
• the f -vector of simplicial 4-polytopes satisfies f1 ≥ 4f0 − 10;
• the f -vector of simplicial 5-polytopes satisfies f1 ≥ 5f0 − 15.

Thus he conjectured that for simplicial d-polytopes, d ≥ 3, f1 ≥ df0 −
(
d+1

2

)
. This was proven

in 1970 by Barnette, who noticed that for d ≥ 2 such equation can be equivalently rewritten as
−d+ f0 ≤ d(d−1)

2 − (d− 1)f0 + f1, or in other words,

h1 ≤ h2.
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Note that for simplicial 2-polytopes, h1 ≤ h2 is false, since h1 = −2 + f0 and h2 = 1. But
this is expected, because of the Dehn–Sommerville equations: if h0 ≤ h1, we are going to
have hd ≤ hd−1. This triggered the question of whether perhaps the h-vector of polytopes is
unimodal, even if the f -vector isn’t. This turns out to be true!

Definition 46 (Murai–Nevo, 2012). A triangulation of a d-manifold with boundary M is i-
stacked if it has no interior faces of dimension ≤ d − i − 1. (Or, equivalently, if all faces of
dimension d− i− 1 are on the boundary.)

Theorem 47 (Generalized Lower Bound Theorem, Barnette 1973, Stanley 1975, Murai–Nevo
2012). For every simplicial (homology) (d− 1)-sphere S,

h0 ≤ h1 ≤ h2 ≤ . . . ≤ hm, where m = bd
2
c.

Moreover, if there exists a triangulated d-manifold M with boundary equal to S, then hi(S) =
hi+1(S) for some i < d−1

2 if and only if M is i-stacked.

Remark 48. Adiprasito–Benedetti very recently showed that a PL manifold is i-stacked if and
only if it admits a handle decomposition into handles of index ≤ i. This way it is possible to
construct infinitely many simplicial homology spheres of dimension 6 that are not homeomorphic,
and all have h2 = h3.

Remark 49. The GLBT holds for simplicial complexes only. For arbitrary polytopes, we
don’t even have a good conjecture (and also, the hi’s behave differently: We no longer have
Dehn–Sommerville or non-negativity). Recently Lei Xue proved a conjecture by Grünbaum for
polytopes with d+ s vertices, with 0 ≤ s ≤ 2d: the number of k-faces is at least(

d+ 1

k + 1

)
+

(
d

k + 1

)
−
(
d+ 1− s
k + 1

)
.

Remark 50. The h-vectors of a simplicial polytope is not necessarily log-concave. This is
because it can be shown that if the h-vector of a complex is log-concave, so is its f -vector. Yet
Björner’s example from Proposition 41 has an f -vector that is not log-concave.

The g-theorem

The fact that the h is palindromic and weakly-increasing half the way suggests to define a new
vector that encodes the same information as h (or f):

Definition 51. The g-vector is defined by

g0
def
= 1 and gk = hk − hk−1 for 1 ≤ k ≤ bd/2c.

The lower bound theorem is equivalent to g ≥ 0. So can we get an upper bound for g that
implies the upper bound theorem? The answer is positive, but a bit technical.

Definition 52. For any positive integers k, n, there is a unique way of writing

n =

(
ak
k

)
+

(
ak−1

k − 1

)
+ . . .+

(
ai
i

)
such that ak > ak−1 > . . . > ai ≥ i ≥ 1. Define

∂k(n)
def
=

(
ak
k − 1

)
+

(
ak−1

k − 2

)
+ . . .+

(
ai
i− 1

)
and

∂k(n)
def
=

(
ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ . . .+

(
ai − 1

i− 1

)
.
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Example 53. Set k = 3, n = 7. Then since 7 =
(

4
3

)
+
(

3
2

)
, we have

∂3(7) =

(
3

2

)
+

(
2

1

)
= 5 and ∂3(7) =

(
4

2

)
+

(
3

1

)
= 9.

Definition 54. A sequence (a0, . . . , ad) is called
• a K-sequence if ak−1 ≥ δk(ak) for all k in {1, . . . , d};
• an M -sequence if a0 = 1 and ak−1 ≥ δk(ak) for all k in {1, . . . , d}.

Theorem 55 (Macaulay 1927; Kruskal 1963, Katona 1968, Clements–Lindström 1969).
Let d ≥ 1. Let a0, . . . , ad be integers.
(1) (a0, . . . , ad) is a K-sequence ⇐⇒ the vector (1, a0, . . . , ad) is the f -vector of a d-dimensional

simplicial complex.
(2) (a0, . . . , ad) is an M-sequence⇐⇒ there is a finitely generated graded K-algebra R over some

field K, such that R0 = K, R1 generates R, and dimKRi = ai for all i.

Theorem 56 (g-theorem; Stanley 1979, Billera–Lee 1979, Adiprasito 2018, Karu–Xiao 2022).

Let d ≥ 2. Let g0, . . . , gbd/2c be integers. Let g
def
= (g0, . . . , gbd/2c). The following are equivalent:

(a) g is an M-sequence;
(b) g is the g-vector of a simplicial d-polytope;
(c) g is the g-vector of a (d− 1)-sphere;
(d) g is the g-vector of a (d− 1)-dimensional homology-sphere.

Here (a) implies (b) is due to Billera–Lee; (b) implies (a), to Stanley; (d) implies (a), to
Adiprasito. Recently Karu–Xiao have shared a simpler proof that (c) implies (a).

3.1 Open Problems

(1) (Ziegler) Can one characterize the f-vectors of (not necessarily simplicial) polytopes?
(2) (Kalai) If G is a planar graph, then f1 ≤ 3f0. Is it true that every 2-complex C that embeds

in R4 satisfies f2(C) ≤ 4 · f0(C)? Is there a function A : N→ N such that every d-complex
C that embeds in R2d satisfies fd(C) ≤ A(d) · f0(C)?

(3) (3d-conjecture, Kalai) Is it true that centrally symmetric d-polytope has≥ 3d faces? (Stanley
proved it for the simple/simplicial case.)

(4) (Cube-simplex) For every positive integer k, is there a d such that every polytope of dimen-
sion ≥ d has either a k-face that is a simplex, or a k-face that is a cube?

(5) (Fatness) The fatness of a 4-polytope is f1+f2
f0+f3

. Can it be arbitrarily large?
(6) (Dürer) Does every convex polytope have a non-overlapping edge unfolding?
(7) (Partitionability) The disjoint union of K2 and K3 is a 1-dimensional complex that is par-

titionable, but not shellable. Is there a partitionable non-shellable sphere?
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